समस्या दर्ज करें...
एलजेब्रा उदाहरण
चरण 1
चरण 1.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 1.2
चूँकि में संख्याएँ और चर दोनों शामिल हैं, LCM को खोजने के लिए दो चरण हैं. संख्यात्मक भाग के लिए LCM खोजें फिर चर भाग के लिए LCM पता करें.
चरण 1.3
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 1.4
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 1.5
के गुणनखंड और हैं.
चरण 1.6
को से गुणा करें.
चरण 1.7
का गुणनखंड ही है.
बार आता है.
चरण 1.8
के गुणनखंड हैं, जो कि को एक दूसरे से बार गुणा करते हैं.
बार आता है.
चरण 1.9
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 1.10
को से गुणा करें.
चरण 1.11
के लिए LCM (लघुत्तम समापवर्तक) संख्यात्मक भाग को चर भाग से गुणा किया जाता है.
चरण 2
चरण 2.1
के प्रत्येक पद को से गुणा करें.
चरण 2.2
बाईं ओर को सरल बनाएंं.
चरण 2.2.1
प्रत्येक पद को सरल करें.
चरण 2.2.1.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.2.1.2
और को मिलाएं.
चरण 2.2.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.3.1
में से का गुणनखंड करें.
चरण 2.2.1.3.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.3.3
व्यंजक को फिर से लिखें.
चरण 2.2.1.4
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.2.1.5
और को मिलाएं.
चरण 2.2.1.6
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.6.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.6.2
व्यंजक को फिर से लिखें.
चरण 2.3
दाईं ओर को सरल बनाएंं.
चरण 2.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.1.1
में से का गुणनखंड करें.
चरण 2.3.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.1.3
व्यंजक को फिर से लिखें.
चरण 3
चरण 3.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.2
समीकरण के बाएँ पक्ष का गुणनखंड करें.
चरण 3.2.1
में से का गुणनखंड करें.
चरण 3.2.1.1
व्यंजक को पुन: व्यवस्थित करें.
चरण 3.2.1.1.1
ले जाएं.
चरण 3.2.1.1.2
और को पुन: क्रमित करें.
चरण 3.2.1.2
में से का गुणनखंड करें.
चरण 3.2.1.3
में से का गुणनखंड करें.
चरण 3.2.1.4
को के रूप में फिर से लिखें.
चरण 3.2.1.5
में से का गुणनखंड करें.
चरण 3.2.1.6
में से का गुणनखंड करें.
चरण 3.2.2
गुणनखंड करें.
चरण 3.2.2.1
वर्गीकरण द्वारा गुणनखंड करें.
चरण 3.2.2.1.1
फॉर्म के बहुपद के लिए, मध्य पद को दो पदों के योग के रूप में फिर से लिखें, जिसका गुणनफल है और जिसका योग है.
चरण 3.2.2.1.1.1
में से का गुणनखंड करें.
चरण 3.2.2.1.1.2
को जोड़ के रूप में फिर से लिखें
चरण 3.2.2.1.1.3
वितरण गुणधर्म लागू करें.
चरण 3.2.2.1.2
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
चरण 3.2.2.1.2.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 3.2.2.1.2.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 3.2.2.1.3
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 3.2.2.2
अनावश्यक कोष्ठक हटा दें.
चरण 3.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 3.4
को के बराबर सेट करें और के लिए हल करें.
चरण 3.4.1
को के बराबर सेट करें.
चरण 3.4.2
के लिए हल करें.
चरण 3.4.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.4.2.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 3.4.2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.4.2.2.2
बाईं ओर को सरल बनाएंं.
चरण 3.4.2.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.2.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.2.2.2.1.2
को से विभाजित करें.
चरण 3.4.2.2.3
दाईं ओर को सरल बनाएंं.
चरण 3.4.2.2.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3.5
को के बराबर सेट करें और के लिए हल करें.
चरण 3.5.1
को के बराबर सेट करें.
चरण 3.5.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 4
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: