एलजेब्रा उदाहरण

मूलों (शून्यकों) का पता लगाए x^6-2x^4-4x^2+8=0
चरण 1
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 1.1.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 1.2
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 1.3
को के रूप में फिर से लिखें.
चरण 1.4
को के रूप में फिर से लिखें.
चरण 1.5
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.5.1
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 1.5.2
अनावश्यक कोष्ठक हटा दें.
चरण 1.6
प्रतिपादकों को जोड़ें.
और स्टेप्स के लिए टैप करें…
चरण 1.6.1
को के घात तक बढ़ाएं.
चरण 1.6.2
को के घात तक बढ़ाएं.
चरण 1.6.3
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 1.6.4
और जोड़ें.
चरण 2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 3
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
को के बराबर सेट करें.
चरण 3.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
को के बराबर सेट करें.
चरण 3.2.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.2.2.2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.2.2.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.3.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.2.2.3.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.2.2.3.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
को के बराबर सेट करें.
चरण 4.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.2.2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 4.2.3
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.3.1
को के रूप में फिर से लिखें.
चरण 4.2.3.2
को के रूप में फिर से लिखें.
चरण 4.2.3.3
को के रूप में फिर से लिखें.
चरण 4.2.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 4.2.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 4.2.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 4.2.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 5
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 6