एलजेब्रा उदाहरण

Equationsのシステムを求めなさい。 x^2+y^2=25 x^2=5-y
चरण 1
के लिए में हल करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 1.2
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 1.2.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 1.2.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 2
सिस्टम को हल करें .
और स्टेप्स के लिए टैप करें…
चरण 2.1
प्रत्येक समीकरण में की सभी घटनाओं को से बदलें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
की सभी घटनाओं को में से बदलें.
चरण 2.1.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 2.1.2.1.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.1.2.1.3
और को मिलाएं.
चरण 2.1.2.1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.1.2.1.4.2
व्यंजक को फिर से लिखें.
चरण 2.1.2.1.5
सरल करें.
चरण 2.2
के लिए में हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.2.2
में से घटाएं.
चरण 2.2.3
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.1
मान लीजिए . की सभी घटनाओं के लिए को प्रतिस्थापित करें.
चरण 2.2.3.2
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.3.2.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 2.2.3.2.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 2.2.3.3
की सभी घटनाओं को से बदलें.
चरण 2.2.4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.2.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.5.1
को के बराबर सेट करें.
चरण 2.2.5.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.2.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.6.1
को के बराबर सेट करें.
चरण 2.2.6.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.2.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 2.3
प्रत्येक समीकरण में की सभी घटनाओं को से बदलें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
की सभी घटनाओं को में से बदलें.
चरण 2.3.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.1
को से गुणा करें.
चरण 2.3.2.1.2
में से घटाएं.
चरण 2.3.2.1.3
को के रूप में फिर से लिखें.
चरण 2.3.2.1.4
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 2.4
प्रत्येक समीकरण में की सभी घटनाओं को से बदलें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
की सभी घटनाओं को में से बदलें.
चरण 2.4.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1.1
को से गुणा करें.
चरण 2.4.2.1.2
और जोड़ें.
चरण 2.4.2.1.3
को के रूप में फिर से लिखें.
चरण 2.4.2.1.4
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 3
सिस्टम को हल करें .
और स्टेप्स के लिए टैप करें…
चरण 3.1
प्रत्येक समीकरण में की सभी घटनाओं को से बदलें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
की सभी घटनाओं को में से बदलें.
चरण 3.1.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1.1
उत्पाद नियम को पर लागू करें.
चरण 3.1.2.1.2
को के घात तक बढ़ाएं.
चरण 3.1.2.1.3
को से गुणा करें.
चरण 3.1.2.1.4
को के रूप में फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1.4.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 3.1.2.1.4.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.1.2.1.4.3
और को मिलाएं.
चरण 3.1.2.1.4.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.2.1.4.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.1.2.1.4.4.2
व्यंजक को फिर से लिखें.
चरण 3.1.2.1.4.5
सरल करें.
चरण 3.2
के लिए में हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.2.2
में से घटाएं.
चरण 3.2.3
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.3.1
मान लीजिए . की सभी घटनाओं के लिए को प्रतिस्थापित करें.
चरण 3.2.3.2
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.3.2.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 3.2.3.2.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 3.2.3.3
की सभी घटनाओं को से बदलें.
चरण 3.2.4
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 3.2.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.5.1
को के बराबर सेट करें.
चरण 3.2.5.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.2.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.6.1
को के बराबर सेट करें.
चरण 3.2.6.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.2.7
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3.3
प्रत्येक समीकरण में की सभी घटनाओं को से बदलें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
की सभी घटनाओं को में से बदलें.
चरण 3.3.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1.1
को से गुणा करें.
चरण 3.3.2.1.2
में से घटाएं.
चरण 3.3.2.1.3
को के रूप में फिर से लिखें.
चरण 3.3.2.1.4
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 3.3.2.1.5
को से गुणा करें.
चरण 3.4
प्रत्येक समीकरण में की सभी घटनाओं को से बदलें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
की सभी घटनाओं को में से बदलें.
चरण 3.4.2
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1.1
को से गुणा करें.
चरण 3.4.2.1.2
और जोड़ें.
चरण 3.4.2.1.3
को के रूप में फिर से लिखें.
चरण 3.4.2.1.4
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 3.4.2.1.5
को से गुणा करें.
चरण 4
सिस्टम का हल क्रमित युग्म का पूरा सेट है जो मान्य हल हैं.
चरण 5
परिणाम कई रूपों में दिखाया जा सकता है.
बिन्दू रूप:
समीकरण रूप:
चरण 6