एलजेब्रा उदाहरण

चरण 1
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 1.2
चूँकि में संख्याएँ और चर दोनों शामिल हैं, LCM को खोजने के लिए दो चरण हैं. संख्यात्मक भाग के लिए LCM खोजें फिर चर भाग के लिए LCM पता करें.
चरण 1.3
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 1.4
चूंकि का और के अलावा कोई गुणनखंड नहीं है.
एक अभाज्य संख्या है
चरण 1.5
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 1.6
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 1.7
का गुणनखंड ही है.
बार आता है.
चरण 1.8
के गुणनखंड हैं, जो कि को एक दूसरे से बार गुणा करते हैं.
बार आता है.
चरण 1.9
का गुणनखंड ही है.
बार आता है.
चरण 1.10
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 1.11
को से गुणा करें.
चरण 1.12
के लिए LCM (लघुत्तम समापवर्तक) संख्यात्मक भाग को चर भाग से गुणा किया जाता है.
चरण 2
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
के प्रत्येक पद को से गुणा करें.
चरण 2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.2.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.2.1
में से का गुणनखंड करें.
चरण 2.2.1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.2.3
व्यंजक को फिर से लिखें.
चरण 2.2.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.3.1
में से का गुणनखंड करें.
चरण 2.2.1.3.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.3.3
व्यंजक को फिर से लिखें.
चरण 2.2.1.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.4.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 2.2.1.4.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.4.3
व्यंजक को फिर से लिखें.
चरण 2.2.1.5
वितरण गुणधर्म लागू करें.
चरण 2.2.1.6
को से गुणा करें.
चरण 2.2.2
पदों को जोड़कर सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
में से घटाएं.
चरण 2.2.2.2
और जोड़ें.
चरण 2.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.3.2
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
और को मिलाएं.
चरण 2.3.2.2
को से गुणा करें.
चरण 2.3.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.1
में से का गुणनखंड करें.
चरण 2.3.3.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.3.3
व्यंजक को फिर से लिखें.
चरण 3
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.2.1.2
को से विभाजित करें.
चरण 4
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: