एलजेब्रा उदाहरण

सरल कीजिए (6z^4+3z^2-9)(3z^2-6)^-1
चरण 1
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 2
पदों को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
में से का गुणनखंड करें.
चरण 2.1.2
में से का गुणनखंड करें.
चरण 2.1.3
में से का गुणनखंड करें.
चरण 2.2
को से गुणा करें.
चरण 2.3
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
में से का गुणनखंड करें.
चरण 2.3.2
में से का गुणनखंड करें.
चरण 2.3.3
में से का गुणनखंड करें.
चरण 2.3.4
में से का गुणनखंड करें.
चरण 2.3.5
में से का गुणनखंड करें.
चरण 2.3.6
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.6.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.3.6.2
व्यंजक को फिर से लिखें.
चरण 3
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
को के रूप में फिर से लिखें.
चरण 3.2
मान लीजिए . की सभी घटनाओं के लिए को प्रतिस्थापित करें.
चरण 3.3
वर्गीकरण द्वारा गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
फॉर्म के बहुपद के लिए, मध्य पद को दो पदों के योग के रूप में फिर से लिखें, जिसका गुणनफल है और जिसका योग है.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1.1
से गुणा करें.
चरण 3.3.1.2
को जोड़ के रूप में फिर से लिखें
चरण 3.3.1.3
वितरण गुणधर्म लागू करें.
चरण 3.3.2
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.3.2.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 3.3.2.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 3.3.3
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 3.4
की सभी घटनाओं को से बदलें.
चरण 3.5
को के रूप में फिर से लिखें.
चरण 3.6
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .