एलजेब्रा उदाहरण

मूल्यांकन करें 10^(4x+1)>=100^(x-2)
चरण 1
समीकरण में ऐसे तुल्यांकी व्यंजक बनाएंँ जिनका आधार समान हो.
चरण 2
चूंकि आधार समान हैं, तो दो व्यंजक केवल तभी बराबर होते हैं जब घातांक भी बराबर हों.
चरण 3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
फिर से लिखें.
चरण 3.1.2
शून्य जोड़कर सरल करें.
चरण 3.1.3
वितरण गुणधर्म लागू करें.
चरण 3.1.4
को से गुणा करें.
चरण 3.2
असमानता के बाईं ओर वाले सभी पदों को स्थानांतरित करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
असमानता के दोनों पक्षों से घटाएं.
चरण 3.2.2
में से घटाएं.
चरण 3.3
वाले सभी पदों को असमानता के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 3.3.1
असमानता के दोनों पक्षों से घटाएं.
चरण 3.3.2
में से घटाएं.
चरण 3.4
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.4.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.2.1.2
को से विभाजित करें.
चरण 3.4.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.4.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 5
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 5.1.2
मूल असमानता में को से बदलें.
चरण 5.1.3
बाईं ओर दाईं ओर के बराबर है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य होता है.
सत्य
सत्य
चरण 5.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 5.2.2
मूल असमानता में को से बदलें.
चरण 5.2.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 5.3
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
सही
सही
सही
सही
चरण 6
हल में सभी सच्चे अंतराल होते हैं.
या
चरण 7
अंतराल को जोड़ें.
सभी वास्तविक संख्या
चरण 8
परिणाम कई रूपों में दिखाया जा सकता है.
सभी वास्तविक संख्या
मध्यवर्ती संकेतन:
चरण 9