2501 |
Simplifier la Matrice |
[[1,-5,11],[0,0,0]] |
[1−511000] |
2502 |
Simplifier la Matrice |
[[1,5,-5],[2,6,3]]*[[4x,4x],[2x,0]] |
[15−5263]⋅[4x4x2x0] |
2503 |
Simplifier la Matrice |
[[1,8,4,9.7],[3,5,2,10.7],[6,5,3,11.9],[1,4,5,7.6],[5,6,4,10.4]]+[[9,5,11,18.2],[4,1,11,14.9],[11,7,15,19.4],[2,8,23,12.5],[16,1,5,17.1]]+[[8,6,18,17.9],[7,1,14,16.5],[6,3,21,18.2],[1,7,17,10.8],[8,2,18,17.1]]+[[7,5,10,15],[0,0,0,0],[6,5,13,15.9],[1,3,12,10.9],[8,4,5,13.9]]+[[4,4,9,12.4],[3,1,9,12],[9,5,9,13.2],[1,4,14,8.9],[12,2,4,13.7]] |
⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1849.735210.765311.91457.656410.4⎤⎥
⎥
⎥
⎥
⎥
⎥⎦+⎡⎢
⎢
⎢
⎢
⎢
⎢⎣951118.2411114.91171519.4282312.5161517.1⎤⎥
⎥
⎥
⎥
⎥
⎥⎦+⎡⎢
⎢
⎢
⎢
⎢
⎢⎣861817.9711416.5632118.2171710.8821817.1⎤⎥
⎥
⎥
⎥
⎥
⎥⎦+⎡⎢
⎢
⎢
⎢
⎢
⎢⎣7510150000651315.9131210.984513.9⎤⎥
⎥
⎥
⎥
⎥
⎥⎦+⎡⎢
⎢
⎢
⎢
⎢
⎢⎣44912.43191295913.214148.9122413.7⎤⎥
⎥
⎥
⎥
⎥
⎥⎦ |
2504 |
Simplifier la Matrice |
[[1,9],[3,20]] |
[19320] |
2505 |
Simplifier la Matrice |
[[1+i,1-i],[i,1]]*[[1-i,1+i],[-i,2]] |
[1+i1−ii1]⋅[1−i1+i−i2] |
2506 |
Simplifier la Matrice |
[[11,3,20,18.5],[14,2,15,23.5],[6,3,13,16.2],[0,2,31,13.3],[5,4,10,15.5]]+[[8,1,10,15],[7,2,10,16],[5,2,7,12],[1,2,19,11],[4,2,16,13]]+[[4,6,11,13.3],[12,6,4,17.1],[0,0,0,0],[0,8,10,8.4],[2,3,7,12.8]]+[[1,5,5,12.4],[8,6,3,17.4],[1,8,5,11.7],[0,5,8,9.2],[1,5,3,9.5]]+[[8,8,12,15],[4,7,15,12.9],[5,8,10,10.8],[0,7,18,10],[8,7,8,12.6]] |
⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1132018.51421523.5631316.2023113.3541015.5⎤⎥
⎥
⎥
⎥
⎥
⎥⎦+⎡⎢
⎢
⎢
⎢
⎢
⎢⎣81101572101652712121911421613⎤⎥
⎥
⎥
⎥
⎥
⎥⎦+⎡⎢
⎢
⎢
⎢
⎢
⎢⎣461113.3126417.1000008108.423712.8⎤⎥
⎥
⎥
⎥
⎥
⎥⎦+⎡⎢
⎢
⎢
⎢
⎢
⎢⎣15512.486317.418511.70589.21539.5⎤⎥
⎥
⎥
⎥
⎥
⎥⎦+⎡⎢
⎢
⎢
⎢
⎢
⎢⎣881215471512.9581010.807181087812.6⎤⎥
⎥
⎥
⎥
⎥
⎥⎦ |
2507 |
Simplifier la Matrice |
[[18,40],[50,82],[8,64],[32,50]] |
⎡⎢
⎢
⎢
⎢⎣184050828643250⎤⎥
⎥
⎥
⎥⎦ |
2508 |
Simplifier la Matrice |
[[-1-i,-1],[2,1-i]] |
[−1−i−121−i] |
2509 |
Simplifier la Matrice |
[[2,0],[7,-1]][[6,-1,3],[5,0,-2]]+[[7,0],[-1,3]][[6,-1,3],[5,0,-2]] |
[207−1][6−1350−2]+[70−13][6−1350−2] |
2510 |
Simplifier la Matrice |
[[-2,1,-2],[1,-1,2],[2,-1,1]][[9],[6],[-9]] |
⎡⎢⎣−21−21−122−11⎤⎥⎦⎡⎢⎣96−9⎤⎥⎦ |
2511 |
Simplifier la Matrice |
[[2,1],[1,-1]]+[[6,-4],[6,4]] |
[211−1]+[6−464] |
2512 |
Simplifier la Matrice |
[[2,3,4,16,12],[3,4,5,29,20],[4,5,6,x,30],[5,6,7,67,42],[6,7,8,92,56]] |
⎡⎢
⎢
⎢
⎢
⎢
⎢⎣23416123452920456x3056767426789256⎤⎥
⎥
⎥
⎥
⎥
⎥⎦ |
2513 |
Simplifier la Matrice |
[[-2,3],[2,-1]][[10,-6],[-9,7]] |
[−232−1][10−6−97] |
2514 |
Simplifier la Matrice |
[[2,3],[4,5]][[2,3],[6,5]] |
[2345][2365] |
2515 |
Simplifier la Matrice |
[[-2,6],[3,-9]]+[[7,1,5],[-3,0,4]] |
[−263−9]+[715−304] |
2516 |
Simplifier la Matrice |
([[2,-8,-10,-14],[-2,3,1,0],[7,0,-1,-3]]*1)/2a |
⎡⎢⎣2−8−10−14−231070−1−3⎤⎥⎦⋅12a |
2517 |
Simplifier la Matrice |
[[2.04a,-1b,0d,0g],[-1a,2.04b,-1d,0g],[0a,-1b,2.04d,-1g],[0a,0b,-1d,2.04g]]-[[40.8],[0.8],[0.8],[200.8]] |
⎡⎢
⎢
⎢
⎢⎣2.04a−1b0d0g−1a2.04b−1d0g0a−1b2.04d−1g0a0b−1d2.04g⎤⎥
⎥
⎥
⎥⎦−⎡⎢
⎢
⎢
⎢⎣40.80.80.8200.8⎤⎥
⎥
⎥
⎥⎦ |
2518 |
Simplifier la Matrice |
[[2.5,0,18,14,8,3.5,10,9]] |
[2.50181483.5109] |
2519 |
Simplifier la Matrice |
[[2],[9]]+[[5],[10]] |
[29]+[510] |
2520 |
Simplifier la Matrice |
[[20,5,19,8,20],[9,0,0,15,0],[13,9,19,18,0]][[1,-2,2],[-1,1,3],[1,-1,4]] |
⎡⎢⎣2051982090015013919180⎤⎥⎦⎡⎢⎣1−22−1131−14⎤⎥⎦ |
2521 |
Simplifier la Matrice |
[[23,-5],[65,-7]] |
[23−565−7] |
2522 |
Simplifier la Matrice |
[[3,-1,4],[5,-3,4],[0,4,-2]][[5,1,5],[4,4,2],[3,-1,4]] |
⎡⎢⎣3−145−3404−2⎤⎥⎦⎡⎢⎣5154423−14⎤⎥⎦ |
2523 |
Simplifier la Matrice |
[[3,2,-1,-15],[5,3,2,0],[3,2,3,11],[-6,-4,2,40]] |
⎡⎢
⎢
⎢
⎢⎣32−1−15532032311−6−4240⎤⎥
⎥
⎥
⎥⎦ |
2524 |
Simplifier la Matrice |
[[3,-5,1],[0,-2,3],[0,5,-1]][[1,0,3],[2,5,1],[3,-5,3]] |
⎡⎢⎣3−510−2305−1⎤⎥⎦⎡⎢⎣1032513−53⎤⎥⎦ |
2525 |
Simplifier la Matrice |
[[3,6,-4,16],[2,-1,-9,-18],[-3,-7,8,-27]] |
⎡⎢⎣36−4162−1−9−18−3−78−27⎤⎥⎦ |
2526 |
Simplifier la Matrice |
[[35,70,175,140],[40,40,80,80],[40,40,90,70]][[2800],[1400],[1500]] |
⎡⎢⎣35701751404040808040409070⎤⎥⎦⎡⎢⎣280014001500⎤⎥⎦ |
2527 |
Simplifier la Matrice |
[[-3x,2y,4z],[x,6y,-2z],[4x,4y,-6z]]=-22 , 16 , 38 |
⎡⎢⎣−3x2y4zx6y−2z4x4y−6z⎤⎥⎦=−22 , 16 , 38 |
2528 |
Simplifier la Matrice |
[[3x,4y,15],[4x,3y,12]] |
[3x4y154x3y12] |
2529 |
Simplifier la Matrice |
[[3x,-5y,8],[2x,5y,22]] |
[3x−5y82x5y22] |
2530 |
Simplifier la Matrice |
[[3x,y,7],[2x,3y,12]] |
[3xy72x3y12] |
2531 |
Simplifier la Matrice |
[[-4,2,3]]+[[-2],[0],[-1]] |
[−423]+⎡⎢⎣−20−1⎤⎥⎦ |
2532 |
Simplifier la Matrice |
[[-4,2k+30],[-12,2k-10]][[-4,24],[-k-15,2k-10]] |
[−42k+30−122k−10][−424−k−152k−10] |
2533 |
Simplifier la Matrice |
[[4,4],[-2,3]][[1,-2],[4,20],[3,4]] |
[44−23]⎡⎢⎣1−242034⎤⎥⎦ |
2534 |
Trouver le déterminant |
[[-9/7,1/7,-3/7],[40/21,-2/7,11/21],[-47/7,6/7,-18/7]] |
⎡⎢
⎢
⎢⎣−9717−374021−271121−47767−187⎤⎥
⎥
⎥⎦ |
2535 |
Trouver le déterminant |
(2)[[1,340,2,2],[1,255,3,0],[2,435,1,4],[1,225,1,1]] |
(2)⎡⎢
⎢
⎢
⎢⎣134022125530243514122511⎤⎥
⎥
⎥
⎥⎦ |
2536 |
Trouver le déterminant |
(-2)[[340,2,2],[435,1,4],[225,1,1]] |
(−2)⎡⎢⎣340224351422511⎤⎥⎦ |
2537 |
Trouver le déterminant |
(-2xz)(-2yz)[[-2x^2,-2xy,-2xz],[-2xy,1-2y^2,-2yz],[-2xz,-2yz,1-2z^2]] |
(−2xz)(−2yz)⎡⎢⎣−2x2−2xy−2xz−2xy1−2y2−2yz−2xz−2yz1−2z2⎤⎥⎦ |
2538 |
Trouver le déterminant |
(3)[[260,1,1],[255,3,0],[435,1,4]] |
(3)⎡⎢⎣260112553043514⎤⎥⎦ |
2539 |
Trouver le déterminant |
(3*2)[[1,4,4],[0,-2,8],[-6,3,5]] |
(3⋅2)⎡⎢⎣1440−28−635⎤⎥⎦ |
2540 |
Trouver le déterminant |
[[5,0,6,4],[5,2,1,0],[7,6,4,7],[5,0,6,4]] |
⎡⎢
⎢
⎢
⎢⎣5064521076475064⎤⎥
⎥
⎥
⎥⎦ |
2541 |
Trouver le déterminant |
|1|[[1,-1,-1,-1],[-1,-1,1,1],[1,1,-1,1],[1,1,1,1]] |
|1|⎡⎢
⎢
⎢
⎢⎣1−1−1−1−1−11111−111111⎤⎥
⎥
⎥
⎥⎦ |
2542 |
Trouver le déterminant |
[[10,12],[-8,-10]]^15 |
[1012−8−10]15 |
2543 |
Trouver le déterminant |
A=[[24,3],[-2,-16]] |
A=[243−2−16] |
2544 |
Trouver le déterminant |
A=[[3 racine carrée de 3,-3],[3,3 racine carrée de 3]] |
A=[3√3−333√3] |
2545 |
Trouver le déterminant |
A=[[9,-6],[4,7]] |
A=[9−647] |
2546 |
Trouver le déterminant |
A=[[x,3,x^2],[-3,5x,0],[4,x^3,1]] |
A=⎡⎢⎣x3x2−35x04x31⎤⎥⎦ |
2547 |
Trouver le déterminant |
ay-pr=1[[a,p],[r,y]]^-1 |
ay−pr=1[apry]−1 |
2548 |
Trouver le déterminant |
det [[2,1],[1,2]]^-1 |
det [2112]−1 |
2549 |
Trouver le déterminant |
det [[-1,6],[-2,6]] |
det [−16−26] |
2550 |
Trouver le déterminant |
det [[3,2,1],[3,4,5],[3,7,8]] |
det ⎡⎢⎣321345378⎤⎥⎦ |
2551 |
Trouver le déterminant |
det [[5,3,5],[1,7,8],[9,4,2]] |
det ⎡⎢⎣535178942⎤⎥⎦ |
2552 |
Trouver le déterminant |
det [[-5,x],[6,1]] |
det [−5x61] |
2553 |
Trouver le déterminant |
det [[x,0],[7,4]]=16 |
det [x074]=16 |
2554 |
Trouver le déterminant |
[[0.25,1,1],[4,3,-5],[-1,-3,-4]] |
⎡⎢⎣0.251143−5−1−3−4⎤⎥⎦ |
2555 |
Trouver le déterminant |
[[-0.5084,-0.1587,0.6857],[-0.8474,-0.7936,3.4285],[0.1525,-0.5873,-0.8571]] |
⎡⎢⎣−0.5084−0.15870.6857−0.8474−0.79363.42850.1525−0.5873−0.8571⎤⎥⎦ |
2556 |
Trouver le déterminant |
[[-3/17,5/17],[4/17,-1/17]] |
[−317517417−117] |
2557 |
Trouver le déterminant |
[[-4/7,2/7,1/7,1/7],[-9/7,1/7,-3/7,1/14],[40/21,-2/7,11/21,1/42],[-47/7,6/7,-18/7,-1/14]] |
⎡⎢
⎢
⎢
⎢
⎢
⎢⎣−47271717−9717−371144021−271121142−47767−187−114⎤⎥
⎥
⎥
⎥
⎥
⎥⎦ |
2558 |
Trouver le déterminant |
[[a^11,a^12,a^13],[a^21,a^22,a^23],[a^31,a^32,a^33]] |
⎡⎢⎣a11a12a13a21a22a23a31a32a33⎤⎥⎦ |
2559 |
Trouver le déterminant |
[[a^2,b^2,c^2],[bc,ac,ab],[a-b-c,b-a-c,c-a-b]] |
⎡⎢⎣a2b2c2bcacaba−b−cb−a−cc−a−b⎤⎥⎦ |
2560 |
Trouver le déterminant |
[[a^2,a,1],[b^2,b,1],[c^2,c,1]] |
⎡⎢⎣a2a1b2b1c2c1⎤⎥⎦ |
2561 |
Trouver le déterminant |
[[a^4,b^4,c^4],[a^2,b^2,c^2],[1,1,1]] |
⎡⎢⎣a4b4c4a2b2c2111⎤⎥⎦ |
2562 |
Trouver le déterminant |
[[e^(3x),e^(2x)],[3e^(3x),2e^(2x)]] |
[e3xe2x3e3x2e2x] |
2563 |
Trouver le déterminant |
[[e^(-3x)cos(2x),e^(-3x)sin(2x)],[-3e^(-3x)cos(2x)-2e^(-3x)sin(2x),-3e^(-3x)sin(2x)+2e^(-3x)cos(2x)]] |
[e−3xcos(2x)e−3xsin(2x)(−3e−3xcos(2x)−2e−3xsin(2x))(−3e−3xsin(2x)+2e−3xcos(2x))] |
2564 |
Trouver le déterminant |
[[e^x,e^(2x),e^(3x)],[e^x,2e^(2x),3e^(3x)],[e^x,4e^(2x),9e^3]] |
⎡⎢⎣exe2xe3xex2e2x3e3xex4e2x9e3⎤⎥⎦ |
2565 |
Trouver le déterminant |
[[e^x,cos(x),sin(x)],[e^x,-sin(x),cos(x)],[e^x,-cos(x),-sin(x)]] |
⎡⎢⎣excos(x)sin(x)ex−sin(x)cos(x)ex−cos(x)−sin(x)⎤⎥⎦ |
2566 |
Trouver le déterminant |
[[ racine carrée de 2,2 racine carrée de 3],[ racine carrée de 6,5]] |
[√22√3√65] |
2567 |
Trouver le déterminant |
[[0,0,-16],[4,4,16],[0,0,4]] |
⎡⎢⎣00−164416004⎤⎥⎦ |
2568 |
Trouver le déterminant |
[[0,0],[1,0]] |
[0010] |
2569 |
Trouver le déterminant |
[[0,-1,4],[3,-4,1],[1,-2,3]] |
⎡⎢⎣0−143−411−23⎤⎥⎦ |
2570 |
Simplifier la Matrice |
[[1,-3,4,5,3],[0,1,5,0,12],[0,0,1,-1,2],[1,-3,0,0,-5]] |
⎡⎢
⎢
⎢
⎢⎣1−3453015012001−121−300−5⎤⎥
⎥
⎥
⎥⎦ |
2571 |
Simplifier la Matrice |
[[1,9,-5,-9],[6,6,7,3],[-8,7,7,3]]-6a+b |
⎡⎢⎣19−5−96673−8773⎤⎥⎦−6a+b |
2572 |
Simplifier la Matrice |
[[1,a+1,a^2],[1-a,1-2a,0],[1,1+a,a]] |
⎡⎢⎣1a+1a21−a1−2a011+aa⎤⎥⎦ |
2573 |
Simplifier la Matrice |
[[12,16,8],[20,12,28],[32,28,36]][[220],[176],[264]] |
⎡⎢⎣12168201228322836⎤⎥⎦⎡⎢⎣220176264⎤⎥⎦ |
2574 |
Simplifier la Matrice |
[[2,0,5],[3,-5,1],[4,-7,6]][[9,7,14]] |
⎡⎢⎣2053−514−76⎤⎥⎦[9714] |
2575 |
Simplifier la Matrice |
[[2,-3,5],[0,1,3],[7,5,4]][[2,-3,2],[6,3,4],[0,4,8]] |
⎡⎢⎣2−35013754⎤⎥⎦⎡⎢⎣2−32634048⎤⎥⎦ |
2576 |
Simplifier la Matrice |
[[-2,3,5],[2,-1,6],[4,-7,-3]]*[[7,-1,4],[-3,5,-2],[5,9,2]] |
⎡⎢⎣−2352−164−7−3⎤⎥⎦⋅⎡⎢⎣7−14−35−2592⎤⎥⎦ |
2577 |
Simplifier la Matrice |
[[2,-31,1],[4,7,-1],[1,2,-2]][[-15,0],[21,10],[13,1]] |
⎡⎢⎣2−31147−112−2⎤⎥⎦⎡⎢⎣−1502110131⎤⎥⎦ |
2578 |
Simplifier la Matrice |
[[2,-5],[1,4]]*[[6,2,3],[-4,0,7]] |
[2−514]⋅[623−407] |
2579 |
Simplifier la Matrice |
[[2,-5],[1,4]][[6,2,3],[-4,0,7]] |
[2−514][623−407] |
2580 |
Simplifier la Matrice |
[[200,300,500,250],[100,150,200,300]] |
[200300500250100150200300] |
2581 |
Simplifier la Matrice |
[[200,350,450],[58,39,19]] |
[200350450583919] |
2582 |
Simplifier la Matrice |
[[3,-12,-6],[2,-8,-4],[4,-16,-8]] |
⎡⎢⎣3−12−62−8−44−16−8⎤⎥⎦ |
2583 |
Simplifier la Matrice |
[[3,5,2,0],[4,7,5,0],[1,1,-4,0],[2,9,6,0]] |
⎡⎢
⎢
⎢
⎢⎣3520475011−402960⎤⎥
⎥
⎥
⎥⎦ |
2584 |
Simplifier la Matrice |
[[-4,3,-6],[0,2,7],[10,15,-3]]-2[[-1,2,4],[-2,0,3],[5,-6,1]] |
⎡⎢⎣−43−60271015−3⎤⎥⎦−2⎡⎢⎣−124−2035−61⎤⎥⎦ |
2585 |
Simplifier la Matrice |
[[-6,4,3],[1,5,-7]] |
[−64315−7] |
2586 |
Simplifier la Matrice |
[[m,n],[x,y]][[3,-1],[3,4]] |
[mnxy][3−134] |
2587 |
Simplifier la Matrice |
[[x,y,z,6],[x,-y,z,7]] |
[xyz6x−yz7] |
2588 |
Trouver le déterminant |
[[1,-2,3,-5,7],[2,0,-1,-5,6],[4,7,3,-9,4],[3,1,-2,-2,3],[-5,-1,3,7,-9]] |
⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1−23−5720−1−56473−9431−2−23−5−137−9⎤⎥
⎥
⎥
⎥
⎥
⎥⎦ |
2589 |
Trouver le déterminant |
[[1,2,3],[4,5,6],[5,7,9]] |
⎡⎢⎣123456579⎤⎥⎦ |
2590 |
Trouver le déterminant |
[[1,-2,1],[5,-15,0],[4,-2,6]] |
⎡⎢⎣1−215−1504−26⎤⎥⎦ |
2591 |
Trouver le déterminant |
[[1,2,2,-4,-3],[4,9,0,-2,3],[0,0,1,0,-2],[0,0,2,1,3],[0,0,0,4,-4]] |
⎡⎢
⎢
⎢
⎢
⎢
⎢⎣122−4−3490−230010−2002130004−4⎤⎥
⎥
⎥
⎥
⎥
⎥⎦ |
2592 |
Trouver le déterminant |
[[1,1,1],[2,-1,3],[4,5,1]] |
⎡⎢⎣1112−13451⎤⎥⎦ |
2593 |
Trouver le déterminant |
[[1,0,4],[4,1,9],[k,7,-4]] |
⎡⎢⎣104419k7−4⎤⎥⎦ |
2594 |
Trouver le déterminant |
[[1,1,0],[0,1,0],[0,0,0]] |
⎡⎢⎣110010000⎤⎥⎦ |
2595 |
Trouver le déterminant |
[[1,1,1],[0,0,1],[0,1,0]] |
⎡⎢⎣111001010⎤⎥⎦ |
2596 |
Trouver les variables |
[[-12,-w^2],[2f,3]]=[[2k,-81],[-14,3]] |
[−12−w22f3]=[2k−81−143] |
2597 |
Trouver le déterminant |
[[0,2,2],[-1,6,-2],[6,2.2,8]] |
⎡⎢⎣022−16−262.28⎤⎥⎦ |
2598 |
Trouver le déterminant |
[[0,4,6],[3,5,4],[6,8,6]] |
⎡⎢⎣046354686⎤⎥⎦ |
2599 |
Trouver le déterminant |
[[0,cos(x),sin(x)],[0,-2cos(x)-sin(x),cos(x)-2sin(x)],[0,3cos(x)+4sin(x),-4cos(x)+3sin(x)]] |
⎡⎢⎣0cos(x)sin(x)0−2cos(x)−sin(x)cos(x)−2sin(x)03cos(x)+4sin(x)−4cos(x)+3sin(x)⎤⎥⎦ |
2600 |
Trouver le déterminant |
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] |
⎡⎢
⎢
⎢
⎢⎣1000010000100001⎤⎥
⎥
⎥
⎥⎦ |