Exemples

Description de la transformation
Étape 1
La fonction parent est la forme la plus simple du type de fonction donné.
Étape 2
Supposez que est et que est .
Étape 3
La transformation de la première équation à la deuxième peut être déterminée en trouvant , et pour chaque équation.
Étape 4
Déterminez , et pour .
Étape 5
Déterminez , et pour .
Étape 6
Le décalage horizontal dépend de la valeur de . Le décalage horizontal est décrit comme :
- Le graphe est décalé de unités vers la gauche.
- Le graphe est décalé de unités vers la droite.
Décalage horizontal : Unités de gauche
Étape 7
Le décalage vertical dépend de la valeur de . Le décalage vertical est décrit comme :
- Le graphe est décalé de unités vers le haut.
- The graph is shifted down units.
Décalage vertical : unités vers le bas
Étape 8
Le signe de décrit la réflexion par rapport à l’abscisse. signifie que le graphe est reflété par rapport à l’abscisse.
Réflexion par rapport à l’abscisse : Aucune
Étape 9
Pour déterminer la transformée, comparez les deux fonctions et vérifiez s’il y a un décalage horizontal ou vertical, une réflexion par rapport à l’abscisse et s’il y a un étirement vertical.
Fonction parent :
Décalage horizontal : Unités de gauche
Décalage vertical : unités vers le bas
Réflexion par rapport à l’abscisse : Aucune
Étape 10
Saisissez VOTRE problème
Mathway nécessite Javascript et un navigateur récent.