Ensembles finis Exemples
Étape 1
Une variable aléatoire discrète prend un ensemble de valeurs séparées (tel que , , …). Sa distribution de probabilité affecte une probabilité à chaque valeur possible . Pour chaque , la probabilité diminue entre et inclus et la somme des probabilités pour toutes les valeurs possibles est égale à .
1. Pour chaque , .
2. .
Étape 2
est compris entre et inclus, ce qui correspond à la première propriété de la distribution de probabilité.
est compris entre et inclus
Étape 3
est compris entre et inclus, ce qui correspond à la première propriété de la distribution de probabilité.
est compris entre et inclus
Étape 4
est compris entre et inclus, ce qui correspond à la première propriété de la distribution de probabilité.
est compris entre et inclus
Étape 5
est compris entre et inclus, ce qui correspond à la première propriété de la distribution de probabilité.
est compris entre et inclus
Étape 6
est compris entre et inclus, ce qui correspond à la première propriété de la distribution de probabilité.
est compris entre et inclus
Étape 7
n’est pas inférieur ou égal à , ce qui ne respecte pas la première propriété de la distribution de probabilité.
n’est pas inférieur ou égal à
Étape 8
est compris entre et inclus, ce qui correspond à la première propriété de la distribution de probabilité.
est compris entre et inclus
Étape 9
La probabilité ne tombe pas entre et inclus pour toutes les valeurs , ce qui ne respecte pas la première propriété de la distribution de probabilités.
La table ne respecte pas les deux propriétés d’une distribution de probabilité