Ensembles finis Exemples

[434112302]
Étape 1
Find the determinant.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 2 by its cofactor and add.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Étape 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Étape 1.1.3
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1232|
Étape 1.1.4
Multiply element a12 by its cofactor.
-3|1232|
Étape 1.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|4432|
Étape 1.1.6
Multiply element a22 by its cofactor.
1|4432|
Étape 1.1.7
The minor for a32 is the determinant with row 3 and column 2 deleted.
|4412|
Étape 1.1.8
Multiply element a32 by its cofactor.
0|4412|
Étape 1.1.9
Add the terms together.
-3|1232|+1|4432|+0|4412|
-3|1232|+1|4432|+0|4412|
Étape 1.2
Multipliez 0 par |4412|.
-3|1232|+1|4432|+0
Étape 1.3
Évaluez |1232|.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Le déterminant d’une matrice 2×2 peut être déterminé en utilisant la formule |abcd|=ad-cb.
-3(12-32)+1|4432|+0
Étape 1.3.2
Simplifiez le déterminant.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1.1
Multipliez 2 par 1.
-3(2-32)+1|4432|+0
Étape 1.3.2.1.2
Multipliez -3 par 2.
-3(2-6)+1|4432|+0
-3(2-6)+1|4432|+0
Étape 1.3.2.2
Soustrayez 6 de 2.
-3-4+1|4432|+0
-3-4+1|4432|+0
-3-4+1|4432|+0
Étape 1.4
Évaluez |4432|.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Le déterminant d’une matrice 2×2 peut être déterminé en utilisant la formule |abcd|=ad-cb.
-3-4+1(42-34)+0
Étape 1.4.2
Simplifiez le déterminant.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.1.1
Multipliez 4 par 2.
-3-4+1(8-34)+0
Étape 1.4.2.1.2
Multipliez -3 par 4.
-3-4+1(8-12)+0
-3-4+1(8-12)+0
Étape 1.4.2.2
Soustrayez 12 de 8.
-3-4+1-4+0
-3-4+1-4+0
-3-4+1-4+0
Étape 1.5
Simplifiez le déterminant.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1.1
Multipliez -3 par -4.
12+1-4+0
Étape 1.5.1.2
Multipliez -4 par 1.
12-4+0
12-4+0
Étape 1.5.2
Soustrayez 4 de 12.
8+0
Étape 1.5.3
Additionnez 8 et 0.
8
8
8
Étape 2
Since the determinant is non-zero, the inverse exists.
Étape 3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[434100112010302001]
Étape 4
Déterminez la forme d’échelon en ligne réduite.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Multiply each element of R1 by 14 to make the entry at 1,1 a 1.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Multiply each element of R1 by 14 to make the entry at 1,1 a 1.
[443444140404112010302001]
Étape 4.1.2
Simplifiez R1.
[13411400112010302001]
[13411400112010302001]
Étape 4.2
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[134114001-11-342-10-141-00-0302001]
Étape 4.2.2
Simplifiez R2.
[134114000141-1410302001]
[134114000141-1410302001]
Étape 4.3
Perform the row operation R3=R3-3R1 to make the entry at 3,1 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Perform the row operation R3=R3-3R1 to make the entry at 3,1 a 0.
[134114000141-14103-310-3(34)2-310-3(14)0-301-30]
Étape 4.3.2
Simplifiez R3.
[134114000141-14100-94-1-3401]
[134114000141-14100-94-1-3401]
Étape 4.4
Multiply each element of R2 by 4 to make the entry at 2,2 a 1.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Multiply each element of R2 by 4 to make the entry at 2,2 a 1.
[13411400404(14)414(-14)41400-94-1-3401]
Étape 4.4.2
Simplifiez R2.
[13411400014-1400-94-1-3401]
[13411400014-1400-94-1-3401]
Étape 4.5
Perform the row operation R3=R3+94R2 to make the entry at 3,2 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Perform the row operation R3=R3+94R2 to make the entry at 3,2 a 0.
[13411400014-1400+940-94+941-1+944-34+94-10+9441+940]
Étape 4.5.2
Simplifiez R3.
[13411400014-140008-391]
[13411400014-140008-391]
Étape 4.6
Multiply each element of R3 by 18 to make the entry at 3,3 a 1.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1
Multiply each element of R3 by 18 to make the entry at 3,3 a 1.
[13411400014-140080888-389818]
Étape 4.6.2
Simplifiez R3.
[13411400014-140001-389818]
[13411400014-140001-389818]
Étape 4.7
Perform the row operation R2=R2-4R3 to make the entry at 2,3 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 4.7.1
Perform the row operation R2=R2-4R3 to make the entry at 2,3 a 0.
[134114000-401-404-41-1-4(-38)4-4(98)0-4(18)001-389818]
Étape 4.7.2
Simplifiez R2.
[1341140001012-12-12001-389818]
[1341140001012-12-12001-389818]
Étape 4.8
Perform the row operation R1=R1-R3 to make the entry at 1,3 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 4.8.1
Perform the row operation R1=R1-R3 to make the entry at 1,3 a 0.
[1-034-01-114+380-980-1801012-12-12001-389818]
Étape 4.8.2
Simplifiez R1.
[134058-98-1801012-12-12001-389818]
[134058-98-1801012-12-12001-389818]
Étape 4.9
Perform the row operation R1=R1-34R2 to make the entry at 1,2 a 0.
Appuyez ici pour voir plus d’étapes...
Étape 4.9.1
Perform the row operation R1=R1-34R2 to make the entry at 1,2 a 0.
[1-34034-3410-34058-3412-98-34(-12)-18-34(-12)01012-12-12001-389818]
Étape 4.9.2
Simplifiez R1.
[10014-341401012-12-12001-389818]
[10014-341401012-12-12001-389818]
[10014-341401012-12-12001-389818]
Étape 5
The right half of the reduced row echelon form is the inverse.
[14-341412-12-12-389818]
Saisissez VOTRE problème
Mathway nécessite Javascript et un navigateur récent.
 [x2  12  π  xdx ] 
AmazonPay