Exemples
Étape 1
Le minimum d’une fonction quadratique se produit sur . Si est positif, la valeur minimale de la fonction est .
se produit sur
Étape 2
Étape 2.1
Remplacez les valeurs de et .
Étape 2.2
Supprimez les parenthèses.
Étape 2.3
Simplifiez .
Étape 2.3.1
Annulez le facteur commun à et .
Étape 2.3.1.1
Factorisez à partir de .
Étape 2.3.1.2
Annulez les facteurs communs.
Étape 2.3.1.2.1
Annulez le facteur commun.
Étape 2.3.1.2.2
Réécrivez l’expression.
Étape 2.3.2
Annulez le facteur commun à et .
Étape 2.3.2.1
Factorisez à partir de .
Étape 2.3.2.2
Annulez les facteurs communs.
Étape 2.3.2.2.1
Factorisez à partir de .
Étape 2.3.2.2.2
Annulez le facteur commun.
Étape 2.3.2.2.3
Réécrivez l’expression.
Étape 2.3.2.2.4
Divisez par .
Étape 2.3.3
Multipliez par .
Étape 3
Étape 3.1
Remplacez la variable par dans l’expression.
Étape 3.2
Simplifiez le résultat.
Étape 3.2.1
Simplifiez chaque terme.
Étape 3.2.1.1
L’élévation de à toute puissance positive produit .
Étape 3.2.1.2
Multipliez par .
Étape 3.2.2
Additionnez et .
Étape 3.2.3
La réponse finale est .
Étape 4
Utilisez les valeurs et pour déterminer où se produit le minimum.
Étape 5