Calcul infinitésimal Exemples

Déterminer si la série est divergente
Étape 1
La série est divergente si la limite de la séquence lorsque approche de n’existe pas ou n’est pas égale à .
Étape 2
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 3
Le test n’est pas concluant car la limite est .
Saisissez VOTRE problème
Mathway nécessite Javascript et un navigateur récent.