Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Différenciez par rapport à .
Étape 1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3
Évaluez .
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.3
Multipliez par .
Étape 1.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2
Étape 2.1
Différenciez par rapport à .
Étape 2.2
Différenciez.
Étape 2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3
Multipliez par .
Étape 2.4
Différenciez en utilisant la règle de la constante.
Étape 2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.2
Additionnez et .
Étape 3
Étape 3.1
Remplacez par et par .
Étape 3.2
Comme il a été démontré que les deux côtés étaient équivalents, l’équation est une identité.
est une identité.
est une identité.
Étape 4
Définissez égal à l’intégrale de .
Étape 5
Étape 5.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 5.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 5.4
Appliquez la règle de la constante.
Étape 5.5
Associez et .
Étape 5.6
Simplifiez
Étape 6
Comme l’intégrale de contient une constante d’intégration, nous pouvons remplacer par .
Étape 7
Définissez .
Étape 8
Étape 8.1
Différenciez par rapport à .
Étape 8.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 8.3
Évaluez .
Étape 8.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 8.3.3
Multipliez par .
Étape 8.4
Évaluez .
Étape 8.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 8.4.3
Déplacez à gauche de .
Étape 8.5
Différenciez à l’aide de la règle de fonction qui indique que la dérivée de est .
Étape 8.6
Remettez les termes dans l’ordre.
Étape 9
Étape 9.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 9.1.1
Soustrayez des deux côtés de l’équation.
Étape 9.1.2
Soustrayez des deux côtés de l’équation.
Étape 9.1.3
Associez les termes opposés dans .
Étape 9.1.3.1
Soustrayez de .
Étape 9.1.3.2
Additionnez et .
Étape 9.1.3.3
Soustrayez de .
Étape 9.1.3.4
Additionnez et .
Étape 10
Étape 10.1
Intégrez les deux côtés de .
Étape 10.2
Évaluez .
Étape 10.3
Appliquez la règle de la constante.
Étape 11
Remplacez par dans .