Calcul infinitésimal Exemples

Étape 1
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez par rapport à .
Étape 1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3
La dérivée de par rapport à est .
Étape 1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4.2
Additionnez et .
Étape 2
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez par rapport à .
Étape 2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.4
Multipliez par .
Étape 3
Vérifiez que .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez par et par .
Étape 3.2
Comme il a été démontré que les deux côtés étaient équivalents, l’équation est une identité.
est une identité.
est une identité.
Étape 4
Définissez égal à l’intégrale de .
Étape 5
Intégrez pour déterminer .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.2
L’intégrale de par rapport à est .
Étape 5.3
Simplifiez
Étape 6
Comme l’intégrale de contient une constante d’intégration, nous pouvons remplacer par .
Étape 7
Définissez .
Étape 8
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Différenciez par rapport à .
Étape 8.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 8.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 8.3.3
Multipliez par .
Étape 8.4
Différenciez à l’aide de la règle de fonction qui indique que la dérivée de est .
Étape 8.5
Remettez les termes dans l’ordre.
Étape 9
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Soustrayez des deux côtés de l’équation.
Étape 9.1.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.2.1
Soustrayez de .
Étape 9.1.2.2
Additionnez et .
Étape 10
Déterminez la primitive de afin de déterminer .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Intégrez les deux côtés de .
Étape 10.2
Évaluez .
Étape 10.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 11
Remplacez par dans .
Étape 12
Associez et .
Saisissez VOTRE problème
Mathway nécessite Javascript et un navigateur récent.