Calcul infinitésimal Exemples

Déterminez les valeurs de r qui respectent l’équation différentielle
,
Étape 1
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez les deux côtés de l’équation.
Étape 1.2
La dérivée de par rapport à est .
Étape 1.3
Différenciez le côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.1.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 1.3.1.3
Remplacez toutes les occurrences de par .
Étape 1.3.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.2.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.3.1
Multipliez par .
Étape 1.3.2.3.2
Remettez les facteurs dans l’ordre dans .
Étape 1.4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 2
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée.
Étape 2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.3.3
Remplacez toutes les occurrences de par .
Étape 2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5
Élevez à la puissance .
Étape 2.6
Élevez à la puissance .
Étape 2.7
Utilisez la règle de puissance pour associer des exposants.
Étape 2.8
Additionnez et .
Étape 2.9
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.10
Multipliez par .
Étape 3
Remplacez dans l’équation différentielle donnée.
Étape 4
Remplacez par .
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Divisez chaque terme dans par .
Étape 5.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.1.1
Annulez le facteur commun.
Étape 5.1.2.1.2
Réécrivez l’expression.
Étape 5.1.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.2.1
Annulez le facteur commun.
Étape 5.1.2.2.2
Divisez par .
Étape 5.1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.3.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.3.1.1
Annulez le facteur commun.
Étape 5.1.3.1.2
Réécrivez l’expression.
Étape 5.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 5.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Réécrivez comme .
Étape 5.3.2
Toute racine de est .
Étape 5.3.3
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1
Réécrivez comme .
Étape 5.3.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 5.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 5.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Saisissez VOTRE problème
Mathway nécessite Javascript et un navigateur récent.