Calcul infinitésimal Exemples

Étape 1
Laissez , où . Puis . Depuis , est positif.
Étape 2
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1
Associez et .
Étape 2.1.1.2
Appliquez la règle de produit à .
Étape 2.1.1.3
Élevez à la puissance .
Étape 2.1.1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.4.1
Factorisez à partir de .
Étape 2.1.1.4.2
Annulez le facteur commun.
Étape 2.1.1.4.3
Réécrivez l’expression.
Étape 2.1.1.5
Réécrivez comme .
Étape 2.1.2
Appliquez l’identité pythagoricienne.
Étape 2.1.3
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Associez et .
Étape 2.2.2
Élevez à la puissance .
Étape 2.2.3
Élevez à la puissance .
Étape 2.2.4
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.5
Additionnez et .
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Utilisez la formule de l’angle moitié pour réécrire en .
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Multipliez par .
Étape 6.2
Multipliez par .
Étape 7
Séparez l’intégrale unique en plusieurs intégrales.
Étape 8
Appliquez la règle de la constante.
Étape 9
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Différenciez .
Étape 9.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 9.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 9.1.4
Multipliez par .
Étape 9.2
Réécrivez le problème en utilisant et .
Étape 10
Associez et .
Étape 11
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 12
L’intégrale de par rapport à est .
Étape 13
Simplifiez
Étape 14
Remplacez à nouveau pour chaque variable de substitution de l’intégration.
Appuyez ici pour voir plus d’étapes...
Étape 14.1
Remplacez toutes les occurrences de par .
Étape 14.2
Remplacez toutes les occurrences de par .
Étape 14.3
Remplacez toutes les occurrences de par .
Étape 15
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 15.1
Associez et .
Étape 15.2
Appliquez la propriété distributive.
Étape 15.3
Associez et .
Étape 15.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 15.4.1
Multipliez par .
Étape 15.4.2
Multipliez par .
Étape 16
Remettez les termes dans l’ordre.
Saisissez VOTRE problème
Mathway nécessite Javascript et un navigateur récent.