Elementarmathematik Beispiele

Finde die Asymptoten f(x)=(-2x^2-4x)/(4x+8)
Schritt 1
Ermittle, wo der Ausdruck nicht definiert ist.
Schritt 2
Die vertikalen Asymptoten treten in Bereichen einer unendlichen Unstetigkeit auf.
Keine vertikalen Asymptoten
Schritt 3
Betrachte die rationale Funktion , wobei der Grad des Zählers und der Grad des Nenners ist.
1. Wenn , dann ist die x-Achse, , die horizontale Asymptote.
2. Wenn , dann ist die horizontale Asymptote die Gerade .
3. Wenn , dann gibt es keine horizontale Asymptote (es gibt eine schiefe Asymptote).
Schritt 4
Ermittle und .
Schritt 5
Da , gibt es keine horizontale Asymptote.
Keine horizontalen Asymptoten
Schritt 6
Ermittle die schiefe Asymptote durch Polynomdivision.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1.1
Faktorisiere aus heraus.
Schritt 6.1.1.2
Faktorisiere aus heraus.
Schritt 6.1.1.3
Faktorisiere aus heraus.
Schritt 6.1.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.2.1
Faktorisiere aus heraus.
Schritt 6.1.2.2
Faktorisiere aus heraus.
Schritt 6.1.2.3
Faktorisiere aus heraus.
Schritt 6.1.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.3.1
Faktorisiere aus heraus.
Schritt 6.1.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.3.2.1
Faktorisiere aus heraus.
Schritt 6.1.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.1.3.2.3
Forme den Ausdruck um.
Schritt 6.1.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.4.1
Faktorisiere aus heraus.
Schritt 6.1.4.2
Schreibe als um.
Schritt 6.1.4.3
Faktorisiere aus heraus.
Schritt 6.1.4.4
Schreibe als um.
Schritt 6.1.4.5
Kürze den gemeinsamen Faktor.
Schritt 6.1.4.6
Forme den Ausdruck um.
Schritt 6.1.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.5.1
Bringe auf die linke Seite von .
Schritt 6.1.5.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.2
Kehre das Vorzeichen von um.
Schritt 6.3
Stelle die zu dividierenden Polynome auf. Wenn es nicht für jeden Exponenten einen Term gibt, setze einen ein mit dem Wert .
-+
Schritt 6.4
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
-
-+
Schritt 6.5
Multipliziere den neuen Bruchterm mit dem Teiler.
-
-+
-
Schritt 6.6
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
-
-+
+
Schritt 6.7
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
-
-+
+
Schritt 6.8
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
-
-+
+
+
Schritt 6.9
Da der Rest gleich ist, ist der Quotient das endgültige Ergebnis.
Schritt 6.10
Da aus der Polynomendivision kein polynomialer Teil resultiert, gibt es keine schiefen Asymptoten.
Keine schiefen Asymptoten
Keine schiefen Asymptoten
Schritt 7
Das ist die Menge aller Asymptoten.
Keine vertikalen Asymptoten
Keine horizontalen Asymptoten
Keine schiefen Asymptoten
Schritt 8