Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Das Maximum einer quadratischen Funktion tritt bei auf. Wenn negativ ist, ist der Maximalwert der Funktion .
tritt auf bei
Schritt 2
Schritt 2.1
Setze die Werte von und ein.
Schritt 2.2
Entferne die Klammern.
Schritt 2.3
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.1
Faktorisiere aus heraus.
Schritt 2.3.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.2.1
Faktorisiere aus heraus.
Schritt 2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.2.3
Forme den Ausdruck um.
Schritt 3
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Schritt 3.2.1.1.1
Wende die Produktregel auf an.
Schritt 3.2.1.1.2
Wende die Produktregel auf an.
Schritt 3.2.1.2
Potenziere mit .
Schritt 3.2.1.3
Mutltipliziere mit .
Schritt 3.2.1.4
Potenziere mit .
Schritt 3.2.1.5
Potenziere mit .
Schritt 3.2.1.6
Multipliziere .
Schritt 3.2.1.6.1
Kombiniere und .
Schritt 3.2.1.6.2
Mutltipliziere mit .
Schritt 3.2.1.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.2.1.8
Multipliziere .
Schritt 3.2.1.8.1
Mutltipliziere mit .
Schritt 3.2.1.8.2
Kombiniere und .
Schritt 3.2.1.8.3
Mutltipliziere mit .
Schritt 3.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.2.3
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Schritt 3.2.3.1
Mutltipliziere mit .
Schritt 3.2.3.2
Mutltipliziere mit .
Schritt 3.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.2.5
Vereinfache den Zähler.
Schritt 3.2.5.1
Mutltipliziere mit .
Schritt 3.2.5.2
Addiere und .
Schritt 3.2.6
Die endgültige Lösung ist .
Schritt 4
Benutze die - und -Werte, um zu ermitteln, wo das Maximum auftritt.
Schritt 5