Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Das Minimum einer quadratischen Funktion tritt bei auf. Wenn positiv ist, ist der Minimalwert der Funktion .
tritt auf bei
Schritt 2
Schritt 2.1
Setze die Werte von und ein.
Schritt 2.2
Entferne die Klammern.
Schritt 2.3
Vereinfache .
Schritt 2.3.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.1.1
Schreibe als um.
Schritt 2.3.1.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.3
Forme den Ausdruck um.
Schritt 2.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3.3
Multipliziere .
Schritt 2.3.3.1
Mutltipliziere mit .
Schritt 2.3.3.2
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 3.2
Vereinfache das Ergebnis.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Wende die Produktregel auf an.
Schritt 3.2.1.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 3.2.1.3
Potenziere mit .
Schritt 3.2.2
Ermittle den gemeinsamen Nenner.
Schritt 3.2.2.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 3.2.2.2
Mutltipliziere mit .
Schritt 3.2.2.3
Mutltipliziere mit .
Schritt 3.2.2.4
Mutltipliziere mit .
Schritt 3.2.2.5
Mutltipliziere mit .
Schritt 3.2.2.6
Mutltipliziere mit .
Schritt 3.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.2.4
Vereinfache den Ausdruck.
Schritt 3.2.4.1
Mutltipliziere mit .
Schritt 3.2.4.2
Subtrahiere von .
Schritt 3.2.4.3
Addiere und .
Schritt 3.2.5
Die endgültige Lösung ist .
Schritt 4
Benutze die - und -Werte, um zu ermitteln, wo das Minimum auftritt.
Schritt 5