Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Schritt 1.1
Faktorisiere aus heraus.
Schritt 1.1.1
Faktorisiere aus heraus.
Schritt 1.1.2
Faktorisiere aus heraus.
Schritt 1.1.3
Faktorisiere aus heraus.
Schritt 1.2
Bilde für jeden Faktor im Nenner einen neuen Bruch mit dem Faktor als Nenner und einem unbekannten Wert als Zähler. Da der Faktor von zweiter Ordnung ist, sind Terme im Zähler erforderlich. Die Anzahl der erforderlichen Terme im Zähler ist immer gleich der Ordnung des Faktors im Nenner.
Schritt 1.3
Multipliziere jeden Bruch in der Gleichung mit dem Nenner des ursprünglichen Ausdrucks. In diesem Fall ist der Nenner gleich .
Schritt 1.4
Kürze den gemeinsamen Faktor von .
Schritt 1.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.4.2
Forme den Ausdruck um.
Schritt 1.5
Kürze den gemeinsamen Faktor von .
Schritt 1.5.1
Kürze den gemeinsamen Faktor.
Schritt 1.5.2
Dividiere durch .
Schritt 1.6
Vereinfache jeden Term.
Schritt 1.6.1
Kürze den gemeinsamen Faktor von .
Schritt 1.6.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.6.1.2
Dividiere durch .
Schritt 1.6.2
Wende das Distributivgesetz an.
Schritt 1.6.3
Bringe auf die linke Seite von .
Schritt 1.6.4
Kürze den gemeinsamen Teiler von und .
Schritt 1.6.4.1
Faktorisiere aus heraus.
Schritt 1.6.4.2
Kürze die gemeinsamen Faktoren.
Schritt 1.6.4.2.1
Potenziere mit .
Schritt 1.6.4.2.2
Faktorisiere aus heraus.
Schritt 1.6.4.2.3
Kürze den gemeinsamen Faktor.
Schritt 1.6.4.2.4
Forme den Ausdruck um.
Schritt 1.6.4.2.5
Dividiere durch .
Schritt 1.6.5
Wende das Distributivgesetz an.
Schritt 1.6.6
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.6.6.1
Mutltipliziere mit .
Schritt 1.6.6.1.1
Potenziere mit .
Schritt 1.6.6.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.6.6.2
Addiere und .
Schritt 1.6.7
Bringe auf die linke Seite von .
Schritt 1.6.8
Wende das Distributivgesetz an.
Schritt 1.6.9
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.6.10
Kürze den gemeinsamen Faktor von .
Schritt 1.6.10.1
Kürze den gemeinsamen Faktor.
Schritt 1.6.10.2
Dividiere durch .
Schritt 1.6.11
Wende das Distributivgesetz an.
Schritt 1.6.12
Multipliziere mit durch Addieren der Exponenten.
Schritt 1.6.12.1
Bewege .
Schritt 1.6.12.2
Mutltipliziere mit .
Schritt 1.6.12.2.1
Potenziere mit .
Schritt 1.6.12.2.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.6.12.3
Addiere und .
Schritt 1.7
Vereinfache den Ausdruck.
Schritt 1.7.1
Bewege .
Schritt 1.7.2
Bewege .
Schritt 1.7.3
Bewege .
Schritt 1.7.4
Bewege .
Schritt 2
Schritt 2.1
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten von jeder Seite der Gleichung. Damit die Gleichung gilt, müssen äquivalente Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 2.2
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten von jeder Seite der Gleichung. Damit die Gleichung gilt, müssen äquivalente Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 2.3
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten von jeder Seite der Gleichung. Damit die Gleichung gilt, müssen äquivalente Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 2.4
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten der Terme, die nicht enthalten. Damit die Gleichung gilt, müssen die äquivalenten Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 2.5
Stelle das Gleichungssystem auf, um die Koeffizienten der Partialbrüche zu ermitteln.
Schritt 3
Schritt 3.1
Löse in nach auf.
Schritt 3.1.1
Schreibe die Gleichung als um.
Schritt 3.1.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.1.2.1
Teile jeden Ausdruck in durch .
Schritt 3.1.2.2
Vereinfache die linke Seite.
Schritt 3.1.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.2.1.2
Dividiere durch .
Schritt 3.1.2.3
Vereinfache die rechte Seite.
Schritt 3.1.2.3.1
Dividiere durch .
Schritt 3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 3.2.1
Ersetze alle in durch .
Schritt 3.2.2
Vereinfache die rechte Seite.
Schritt 3.2.2.1
Entferne die Klammern.
Schritt 3.2.3
Schreibe die Gleichung als um.
Schritt 3.2.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.2.4.1
Teile jeden Ausdruck in durch .
Schritt 3.2.4.2
Vereinfache die linke Seite.
Schritt 3.2.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.4.2.1.2
Dividiere durch .
Schritt 3.2.4.3
Vereinfache die rechte Seite.
Schritt 3.2.4.3.1
Dividiere durch .
Schritt 3.3
Ersetze alle Vorkommen von durch in jeder Gleichung.
Schritt 3.3.1
Schreibe die Gleichung als um.
Schritt 3.3.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.3.3
Ersetze alle in durch .
Schritt 3.3.4
Vereinfache die rechte Seite.
Schritt 3.3.4.1
Entferne die Klammern.
Schritt 3.4
Löse in nach auf.
Schritt 3.4.1
Schreibe die Gleichung als um.
Schritt 3.4.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 3.4.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.4.2.2
Addiere und .
Schritt 3.5
Löse das Gleichungssystem.
Schritt 3.6
Liste alle Lösungen auf.
Schritt 4
Ersetze jeden der Teilbruchkoeffizienten in durch die Werte, die für , , und ermittelt wurden.
Schritt 5
Mutltipliziere mit .