Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Schritt 1.1
Um den/die Schnittpunkt(e) mit der x-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 1.2
Löse die Gleichung.
Schritt 1.2.1
Vereinfache .
Schritt 1.2.1.1
Vereinfache jeden Term.
Schritt 1.2.1.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 1.2.1.1.2
Dividiere durch .
Schritt 1.2.1.2
Subtrahiere von .
Schritt 1.2.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 1.2.3
Vereinfache beide Seiten der Gleichung.
Schritt 1.2.3.1
Vereinfache die linke Seite.
Schritt 1.2.3.1.1
Vereinfache .
Schritt 1.2.3.1.1.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.3.1.1.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 1.2.3.1.1.1.2
Faktorisiere aus heraus.
Schritt 1.2.3.1.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.1.1.1.4
Forme den Ausdruck um.
Schritt 1.2.3.1.1.2
Multipliziere.
Schritt 1.2.3.1.1.2.1
Mutltipliziere mit .
Schritt 1.2.3.1.1.2.2
Mutltipliziere mit .
Schritt 1.2.3.2
Vereinfache die rechte Seite.
Schritt 1.2.3.2.1
Mutltipliziere mit .
Schritt 1.2.4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 1.2.5
Vereinfache .
Schritt 1.2.5.1
Schreibe als um.
Schritt 1.2.5.2
Schreibe als um.
Schritt 1.2.5.3
Schreibe als um.
Schritt 1.2.5.4
Schreibe als um.
Schritt 1.2.5.4.1
Faktorisiere aus heraus.
Schritt 1.2.5.4.2
Schreibe als um.
Schritt 1.2.5.5
Ziehe Terme aus der Wurzel heraus.
Schritt 1.2.5.6
Bringe auf die linke Seite von .
Schritt 1.2.6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 1.2.6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 1.2.6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 1.2.6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 1.3
Um den/die Schnittpunkt(e) mit der x-Achse zu bestimmen, setze für ein und löse nach auf.
Schnittpunkt(e) mit der x-Achse:
Schnittpunkt(e) mit der x-Achse:
Schritt 2
Schritt 2.1
Um den/die Schnittpunkt(e) mit der y-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 2.2
Löse die Gleichung.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Vereinfache jeden Term.
Schritt 2.2.1.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 2.2.1.1.2
Dividiere durch .
Schritt 2.2.1.1.3
Mutltipliziere mit .
Schritt 2.2.1.2
Addiere und .
Schritt 2.2.2
Multipliziere beide Seiten der Gleichung mit .
Schritt 2.2.3
Vereinfache beide Seiten der Gleichung.
Schritt 2.2.3.1
Vereinfache die linke Seite.
Schritt 2.2.3.1.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.3.1.1.2
Forme den Ausdruck um.
Schritt 2.2.3.2
Vereinfache die rechte Seite.
Schritt 2.2.3.2.1
Mutltipliziere mit .
Schritt 2.2.4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.2.5
Vereinfache .
Schritt 2.2.5.1
Schreibe als um.
Schritt 2.2.5.1.1
Faktorisiere aus heraus.
Schritt 2.2.5.1.2
Schreibe als um.
Schritt 2.2.5.2
Ziehe Terme aus der Wurzel heraus.
Schritt 2.2.6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.2.6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.2.6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.2.6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.3
Schnittpunkt(e) mit der y-Achse in Punkt-Form.
Schnittpunkt(e) mit der y-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 3
Führe die Schnittpunkte auf.
Schnittpunkt(e) mit der x-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 4