Elementarmathematik Beispiele

Finde die Nullstellen x^4-2x^2-3=0
Schritt 1
Setze in die Gleichung ein. Das macht die Quadratformel leicht anzuwenden.
Schritt 2
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 2.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Setze gleich .
Schritt 4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Setze gleich .
Schritt 5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 7
Rücksubstituiere den tatsächlichen Wert von in die gelöste Gleichung.
Schritt 8
Löse die erste Gleichung nach auf.
Schritt 9
Löse die Gleichung nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 9.2
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.2.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 9.2.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 9.2.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 10
Löse die zweite Gleichung nach auf.
Schritt 11
Löse die Gleichung nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Entferne die Klammern.
Schritt 11.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 11.3
Schreibe als um.
Schritt 11.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 11.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 11.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 12
Die Lösung von ist .
Schritt 13