Elementarmathematik Beispiele

Ermittle den Kreis mithilfe der Endpunkte des Durchmessers (-5,6) , (7,2)
,
Schritt 1
Der Durchmesser eines Kreises ist jede gerade Strecke, die durch den Mittelpunkt des Kreises geht und deren Endpunkte auf dem Umfang des Kreises liegen. Die gegebenen Endpunkte des Durchmessers sind und . Der Mittelpunkt des Kreises ist der Mittelpunkt des Durchmessers, welcher der Mittelpunkt zwischen und ist. In diesem Fall ist der Mittelpunkt .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Wende die Mittelpunktsformel an, um den Mittelpunkt des Liniensegments zu bestimmen.
Schritt 1.2
Setze die Werte für und ein.
Schritt 1.3
Addiere und .
Schritt 1.4
Dividiere durch .
Schritt 1.5
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Faktorisiere aus heraus.
Schritt 1.5.2
Faktorisiere aus heraus.
Schritt 1.5.3
Faktorisiere aus heraus.
Schritt 1.5.4
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.4.1
Faktorisiere aus heraus.
Schritt 1.5.4.2
Kürze den gemeinsamen Faktor.
Schritt 1.5.4.3
Forme den Ausdruck um.
Schritt 1.5.4.4
Dividiere durch .
Schritt 1.6
Addiere und .
Schritt 2
Bestimme den Radius für den Kreis. Der Radius ist jede Strecke vom Mittelpunkt des Kreises zu einem beliebigen Punkt auf dem Umfang. In diesem Fall ist der Abstand zwischen und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Wende die Abstandsformel an, um den Abstand zwischen den zwei Punkten zu bestimmen.
Schritt 2.2
Setze die tatsächlichen Werte der Punkte in die Abstandsformel ein.
Schritt 2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Subtrahiere von .
Schritt 2.3.2
Potenziere mit .
Schritt 2.3.3
Subtrahiere von .
Schritt 2.3.4
Potenziere mit .
Schritt 2.3.5
Addiere und .
Schritt 2.3.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.1
Faktorisiere aus heraus.
Schritt 2.3.6.2
Schreibe als um.
Schritt 2.3.7
Ziehe Terme aus der Wurzel heraus.
Schritt 3
ist die Form der Gleichung für einen Kreis mit Radius und als Mittelpunkt. In diesem Fall ist und der Mittelpunkt ist . Die Kreisgleichung lautet .
Schritt 4
Die Kreisgleichung ist .
Schritt 5