Elementarmathematik Beispiele

Wandle in Intervallschreibweise um (x^2-81)/(x^4-81)<0
Schritt 1
Bestimme alle die Werte, für die der Ausdruck von negativ nach positiv wechselt durch Gleichsetzen jedes Faktors mit und auflösen.
Schritt 2
Addiere zu beiden Seiten der Gleichung.
Schritt 3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe als um.
Schritt 4.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 6
Addiere zu beiden Seiten der Gleichung.
Schritt 7
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 8
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Schreibe als um.
Schritt 8.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 9
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 9.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 9.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 10
Löse für jeden Faktor, um die Werte zu ermitteln, wo der Absolutwert-Ausdruck von negativ nach positiv wechselt.
Schritt 11
Fasse die Lösungen zusammen.
Schritt 12
Bestimme den Definitionsbereich von .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 12.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 12.2.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 12.2.3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.3.1
Schreibe als um.
Schritt 12.2.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 12.2.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.2.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 12.2.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 12.2.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 12.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 13
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 14
Wähle einen Testwert aus jedem Intervall und setze diesen Wert in die ursprüngliche Ungleichung ein, um zu ermitteln, welche Intervalle die Ungleichung erfüllen.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 14.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 14.1.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 14.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 14.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 14.2.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 14.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 14.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 14.3.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 14.4
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.4.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 14.4.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 14.4.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
Wahr
Wahr
Schritt 14.5
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.5.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 14.5.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 14.5.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
Falsch
Falsch
Schritt 14.6
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Falsch
Wahr
Falsch
Wahr
Falsch
Falsch
Wahr
Falsch
Wahr
Falsch
Schritt 15
Die Lösung besteht aus allen wahren Intervallen.
oder
Schritt 16
Notiere die Ungleichung in Intervallschreibweise.
Schritt 17