Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
,
Schritt 1
Die Tangensfunktion ist im zweiten und vierten Quadranten negativ. Die Kosinusfunktion ist im ersten und vierten Quadranten positiv. Die Menge der Lösungen für ist daher auf den vierten Quadranten beschränkt, da dies der einzige Quadrant ist, der in beiden Mengen vorkommt.
Die Lösung liegt im vierten Quadranten.
Schritt 2
Benutze die Definition des Kosinus, um die bekannten Seiten des rechtwinkligen Dreiecks im Einheitskreis zu ermitteln. Der Quadrant bestimmt das Vorzeichen jedes Wertes.
Schritt 3
Berechne die Gegenkathete des Dreiecks im Einheitskreis. Da die Ankathete und die Hypotenuse bekannt sind, kannst du den Satz des Pythagoras anwenden, um die verbleibende Seite zu berechnen.
Schritt 4
Ersetze die bekannten Werte in der Gleichung.
Schritt 5
Schritt 5.1
Kehre das Vorzeichen von um.
Gegenkathete
Schritt 5.2
Potenziere mit .
Gegenkathete
Schritt 5.3
Potenziere mit .
Gegenkathete
Schritt 5.4
Mutltipliziere mit .
Gegenkathete
Schritt 5.5
Subtrahiere von .
Gegenkathete
Gegenkathete
Schritt 6
Schritt 6.1
Bestimme den Wert von mithilfe der Definition des Sinus.
Schritt 6.2
Setze die bekannten Werte ein.
Schritt 6.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 7
Schritt 7.1
Benutze die Definition des Tangens, um den Wert von zu ermitteln.
Schritt 7.2
Setze die bekannten Werte ein.
Schritt 7.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 8
Schritt 8.1
Bestimme den Wert von mithilfe der Definition des Kotangens.
Schritt 8.2
Setze die bekannten Werte ein.
Schritt 8.3
Vereinfache den Wert von .
Schritt 8.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 8.3.2
Mutltipliziere mit .
Schritt 8.3.3
Vereinige und vereinfache den Nenner.
Schritt 8.3.3.1
Mutltipliziere mit .
Schritt 8.3.3.2
Potenziere mit .
Schritt 8.3.3.3
Potenziere mit .
Schritt 8.3.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 8.3.3.5
Addiere und .
Schritt 8.3.3.6
Schreibe als um.
Schritt 8.3.3.6.1
Benutze , um als neu zu schreiben.
Schritt 8.3.3.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 8.3.3.6.3
Kombiniere und .
Schritt 8.3.3.6.4
Kürze den gemeinsamen Faktor von .
Schritt 8.3.3.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 8.3.3.6.4.2
Forme den Ausdruck um.
Schritt 8.3.3.6.5
Berechne den Exponenten.
Schritt 9
Schritt 9.1
Bestimme den Wert von mithilfe der Definition des Sekans.
Schritt 9.2
Setze die bekannten Werte ein.
Schritt 10
Schritt 10.1
Bestimme den Wert von mithilfe der Definition des Kosekans.
Schritt 10.2
Setze die bekannten Werte ein.
Schritt 10.3
Vereinfache den Wert von .
Schritt 10.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 10.3.2
Mutltipliziere mit .
Schritt 10.3.3
Vereinige und vereinfache den Nenner.
Schritt 10.3.3.1
Mutltipliziere mit .
Schritt 10.3.3.2
Potenziere mit .
Schritt 10.3.3.3
Potenziere mit .
Schritt 10.3.3.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 10.3.3.5
Addiere und .
Schritt 10.3.3.6
Schreibe als um.
Schritt 10.3.3.6.1
Benutze , um als neu zu schreiben.
Schritt 10.3.3.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 10.3.3.6.3
Kombiniere und .
Schritt 10.3.3.6.4
Kürze den gemeinsamen Faktor von .
Schritt 10.3.3.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 10.3.3.6.4.2
Forme den Ausdruck um.
Schritt 10.3.3.6.5
Berechne den Exponenten.
Schritt 11
Das ist die Lösung zu jedem trigonometrischen Wert.