Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Schritt 1.1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 1.2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 1.3
Vereinfache.
Schritt 1.3.1
Vereinfache den Zähler.
Schritt 1.3.1.1
Potenziere mit .
Schritt 1.3.1.2
Mutltipliziere mit .
Schritt 1.3.1.3
Wende das Distributivgesetz an.
Schritt 1.3.1.4
Vereinfache.
Schritt 1.3.1.4.1
Mutltipliziere mit .
Schritt 1.3.1.4.2
Mutltipliziere mit .
Schritt 1.3.1.4.3
Mutltipliziere mit .
Schritt 1.3.1.5
Subtrahiere von .
Schritt 1.3.1.6
Faktorisiere aus heraus.
Schritt 1.3.1.6.1
Faktorisiere aus heraus.
Schritt 1.3.1.6.2
Faktorisiere aus heraus.
Schritt 1.3.1.6.3
Faktorisiere aus heraus.
Schritt 1.3.1.6.4
Faktorisiere aus heraus.
Schritt 1.3.1.6.5
Faktorisiere aus heraus.
Schritt 1.3.2
Mutltipliziere mit .
Schritt 1.4
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 1.4.1
Vereinfache den Zähler.
Schritt 1.4.1.1
Potenziere mit .
Schritt 1.4.1.2
Mutltipliziere mit .
Schritt 1.4.1.3
Wende das Distributivgesetz an.
Schritt 1.4.1.4
Vereinfache.
Schritt 1.4.1.4.1
Mutltipliziere mit .
Schritt 1.4.1.4.2
Mutltipliziere mit .
Schritt 1.4.1.4.3
Mutltipliziere mit .
Schritt 1.4.1.5
Subtrahiere von .
Schritt 1.4.1.6
Faktorisiere aus heraus.
Schritt 1.4.1.6.1
Faktorisiere aus heraus.
Schritt 1.4.1.6.2
Faktorisiere aus heraus.
Schritt 1.4.1.6.3
Faktorisiere aus heraus.
Schritt 1.4.1.6.4
Faktorisiere aus heraus.
Schritt 1.4.1.6.5
Faktorisiere aus heraus.
Schritt 1.4.2
Mutltipliziere mit .
Schritt 1.4.3
Ändere das zu .
Schritt 1.4.4
Schreibe als um.
Schritt 1.4.5
Faktorisiere aus heraus.
Schritt 1.4.6
Faktorisiere aus heraus.
Schritt 1.4.7
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.5
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Schritt 1.5.1
Vereinfache den Zähler.
Schritt 1.5.1.1
Potenziere mit .
Schritt 1.5.1.2
Mutltipliziere mit .
Schritt 1.5.1.3
Wende das Distributivgesetz an.
Schritt 1.5.1.4
Vereinfache.
Schritt 1.5.1.4.1
Mutltipliziere mit .
Schritt 1.5.1.4.2
Mutltipliziere mit .
Schritt 1.5.1.4.3
Mutltipliziere mit .
Schritt 1.5.1.5
Subtrahiere von .
Schritt 1.5.1.6
Faktorisiere aus heraus.
Schritt 1.5.1.6.1
Faktorisiere aus heraus.
Schritt 1.5.1.6.2
Faktorisiere aus heraus.
Schritt 1.5.1.6.3
Faktorisiere aus heraus.
Schritt 1.5.1.6.4
Faktorisiere aus heraus.
Schritt 1.5.1.6.5
Faktorisiere aus heraus.
Schritt 1.5.2
Mutltipliziere mit .
Schritt 1.5.3
Ändere das zu .
Schritt 1.5.4
Faktorisiere aus heraus.
Schritt 1.5.4.1
Stelle und um.
Schritt 1.5.4.2
Faktorisiere aus heraus.
Schritt 1.5.4.3
Schreibe als um.
Schritt 1.5.4.4
Faktorisiere aus heraus.
Schritt 1.5.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.6
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 2
Um ein Polynom in Normalform zu schreiben, vereinfache es und ordne die Terme dann in absteigender Folge.
Schritt 3
Zerlege den Bruch in zwei Brüche.
Schritt 4
Schritt 4.1
Kürze den gemeinsamen Teiler von und .
Schritt 4.1.1
Faktorisiere aus heraus.
Schritt 4.1.2
Kürze die gemeinsamen Faktoren.
Schritt 4.1.2.1
Faktorisiere aus heraus.
Schritt 4.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.1.2.3
Forme den Ausdruck um.
Schritt 4.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Wende das Distributivgesetz an.
Schritt 6
Zerlege den Bruch in zwei Brüche.
Schritt 7
Schritt 7.1
Faktorisiere aus heraus.
Schritt 7.2
Kürze die gemeinsamen Faktoren.
Schritt 7.2.1
Faktorisiere aus heraus.
Schritt 7.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.2.3
Forme den Ausdruck um.
Schritt 8
Wende das Distributivgesetz an.
Schritt 9
Stelle die Terme um.
Schritt 10
Entferne die Klammern.
Schritt 11