Elementarmathematik Beispiele

Ermittle den Maximum-/Minimumwert f(x)=(x-2)^2+5
Schritt 1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe als um.
Schritt 1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende das Distributivgesetz an.
Schritt 1.2.2
Wende das Distributivgesetz an.
Schritt 1.2.3
Wende das Distributivgesetz an.
Schritt 1.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Mutltipliziere mit .
Schritt 1.3.1.2
Bringe auf die linke Seite von .
Schritt 1.3.1.3
Mutltipliziere mit .
Schritt 1.3.2
Subtrahiere von .
Schritt 2
Addiere und .
Schritt 3
Das Minimum einer quadratischen Funktion tritt bei auf. Wenn positiv ist, ist der Minimalwert der Funktion .
tritt auf bei
Schritt 4
Ermittele den Wert von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Setze die Werte von und ein.
Schritt 4.2
Entferne die Klammern.
Schritt 4.3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.1
Faktorisiere aus heraus.
Schritt 4.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.2.1
Faktorisiere aus heraus.
Schritt 4.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.3.1.2.3
Forme den Ausdruck um.
Schritt 4.3.1.2.4
Dividiere durch .
Schritt 4.3.2
Mutltipliziere mit .
Schritt 5
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Ersetze in dem Ausdruck die Variable durch .
Schritt 5.2
Vereinfache das Ergebnis.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Potenziere mit .
Schritt 5.2.1.2
Mutltipliziere mit .
Schritt 5.2.2
Vereinfache durch Addieren und Subtrahieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Subtrahiere von .
Schritt 5.2.2.2
Addiere und .
Schritt 5.2.3
Die endgültige Lösung ist .
Schritt 6
Benutze die - und -Werte, um zu ermitteln, wo das Minimum auftritt.
Schritt 7