Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Schritt 1.1
Schreibe die Gleichung als um.
Schritt 1.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.2
Vereinfache die linke Seite.
Schritt 1.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.1.2
Dividiere durch .
Schritt 1.3
Addiere zu beiden Seiten der Gleichung.
Schritt 1.4
Stelle die Terme um.
Schritt 2
Benutze die Scheitelpunktform, , um die Werte von , und zu ermitteln.
Schritt 3
Da der Wert von positiv ist, ist die Parabel nach oben geöffnet.
Öffnet nach Oben
Schritt 4
Ermittle den Scheitelpunkt .
Schritt 5
Schritt 5.1
Ermittle den Abstand vom Scheitelpunkt zu einem Brennpunkt der Parabel durch Anwendung der folgenden Formel.
Schritt 5.2
Setze den Wert von in die Formel ein.
Schritt 5.3
Vereinfache.
Schritt 5.3.1
Kombiniere und .
Schritt 5.3.2
Vereinfache durch Teilen von Zahlen.
Schritt 5.3.2.1
Dividiere durch .
Schritt 5.3.2.2
Dividiere durch .
Schritt 6
Schritt 6.1
Der Brennpunkt einer Parabel kann durch Addieren von zur y-Koordinate ermittelt werden, wenn die Parabel nach oben oder unten geöffnet ist.
Schritt 6.2
Setze die bekannten Werte von , und in die Formel ein und vereinfache.
Schritt 7
Finde die Symmtrieachse durch Ermitteln der Geraden, die durch den Scheitelpunkt und den Brennpunkt verläuft.
Schritt 8
Schritt 8.1
Die Leitlinie einer Parabel ist die horizontale Gerade, die durch Subtrahieren von von der y-Koordinate des Scheitelpunkts ermittelt wird, wenn die Parabel nach oben oder unten geöffnet ist.
Schritt 8.2
Setze die bekannten Werte von und in die Formel ein und vereinfache.
Schritt 9
Wende die Eigenschaften der Parabel an, um die Parabel zu analysieren und graphisch darzustellen.
Richtung: Nach oben offen
Scheitelpunkt:
Brennpunkt:
Symmetrieachse:
Leitlinie:
Schritt 10