Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Wende die Form an, um die Variablen, die zur Ermittlung von Amplitude, Periode, Phasenverschiebung und vertikaler Verschiebung genutzt werden, zu bestimmen.
Schritt 2
Bestimme die Amplitude .
Amplitude:
Schritt 3
Schritt 3.1
Ermittele die Periode von .
Schritt 3.1.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.1.2
Ersetze durch in der Formel für die Periode.
Schritt 3.1.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.2
Ermittele die Periode von .
Schritt 3.2.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.2.2
Ersetze durch in der Formel für die Periode.
Schritt 3.2.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.3
Die Periode der Summe/Differenz trigonometrischer Funktionen ist das Maximum der individuellen Perioden.
Schritt 4
Schritt 4.1
Die Phasenverschiebung der Funktion kann mithilfe von berechnet werden.
Phasenverschiebung:
Schritt 4.2
Ersetze die Werte von und in der Gleichung für die Phasenverschiebung.
Phasenverschiebung:
Schritt 4.3
Kürze den gemeinsamen Teiler von und .
Schritt 4.3.1
Faktorisiere aus heraus.
Phasenverschiebung:
Schritt 4.3.2
Kürze die gemeinsamen Faktoren.
Schritt 4.3.2.1
Faktorisiere aus heraus.
Phasenverschiebung:
Schritt 4.3.2.2
Kürze den gemeinsamen Faktor.
Phasenverschiebung:
Schritt 4.3.2.3
Forme den Ausdruck um.
Phasenverschiebung:
Schritt 4.3.2.4
Dividiere durch .
Phasenverschiebung:
Phasenverschiebung:
Phasenverschiebung:
Phasenverschiebung:
Schritt 5
Liste die Eigenschaften der trigonometrischen Funktion auf.
Amplitude:
Periode:
Phasenverschiebung: ( nach links)
Vertikale Verschiebung:
Schritt 6