Elementarmathematik Beispiele

Schreibe in Normalform 2y^2+12y-x+2=0
Schritt 1
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 1.2
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Potenziere mit .
Schritt 1.3.1.2
Mutltipliziere mit .
Schritt 1.3.1.3
Wende das Distributivgesetz an.
Schritt 1.3.1.4
Mutltipliziere mit .
Schritt 1.3.1.5
Mutltipliziere mit .
Schritt 1.3.1.6
Subtrahiere von .
Schritt 1.3.1.7
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.7.1
Faktorisiere aus heraus.
Schritt 1.3.1.7.2
Faktorisiere aus heraus.
Schritt 1.3.1.7.3
Faktorisiere aus heraus.
Schritt 1.3.1.8
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.8.1
Faktorisiere aus heraus.
Schritt 1.3.1.8.2
Schreibe als um.
Schritt 1.3.1.8.3
Schreibe als um.
Schritt 1.3.1.8.4
Füge Klammern hinzu.
Schritt 1.3.1.9
Ziehe Terme aus der Wurzel heraus.
Schritt 1.3.1.10
Potenziere mit .
Schritt 1.3.2
Mutltipliziere mit .
Schritt 1.3.3
Vereinfache .
Schritt 1.4
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.1
Potenziere mit .
Schritt 1.4.1.2
Mutltipliziere mit .
Schritt 1.4.1.3
Wende das Distributivgesetz an.
Schritt 1.4.1.4
Mutltipliziere mit .
Schritt 1.4.1.5
Mutltipliziere mit .
Schritt 1.4.1.6
Subtrahiere von .
Schritt 1.4.1.7
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.7.1
Faktorisiere aus heraus.
Schritt 1.4.1.7.2
Faktorisiere aus heraus.
Schritt 1.4.1.7.3
Faktorisiere aus heraus.
Schritt 1.4.1.8
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.8.1
Faktorisiere aus heraus.
Schritt 1.4.1.8.2
Schreibe als um.
Schritt 1.4.1.8.3
Schreibe als um.
Schritt 1.4.1.8.4
Füge Klammern hinzu.
Schritt 1.4.1.9
Ziehe Terme aus der Wurzel heraus.
Schritt 1.4.1.10
Potenziere mit .
Schritt 1.4.2
Mutltipliziere mit .
Schritt 1.4.3
Vereinfache .
Schritt 1.4.4
Ändere das zu .
Schritt 1.4.5
Schreibe als um.
Schritt 1.4.6
Faktorisiere aus heraus.
Schritt 1.4.7
Faktorisiere aus heraus.
Schritt 1.4.8
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.5
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.1
Potenziere mit .
Schritt 1.5.1.2
Mutltipliziere mit .
Schritt 1.5.1.3
Wende das Distributivgesetz an.
Schritt 1.5.1.4
Mutltipliziere mit .
Schritt 1.5.1.5
Mutltipliziere mit .
Schritt 1.5.1.6
Subtrahiere von .
Schritt 1.5.1.7
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.7.1
Faktorisiere aus heraus.
Schritt 1.5.1.7.2
Faktorisiere aus heraus.
Schritt 1.5.1.7.3
Faktorisiere aus heraus.
Schritt 1.5.1.8
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.8.1
Faktorisiere aus heraus.
Schritt 1.5.1.8.2
Schreibe als um.
Schritt 1.5.1.8.3
Schreibe als um.
Schritt 1.5.1.8.4
Füge Klammern hinzu.
Schritt 1.5.1.9
Ziehe Terme aus der Wurzel heraus.
Schritt 1.5.1.10
Potenziere mit .
Schritt 1.5.2
Mutltipliziere mit .
Schritt 1.5.3
Vereinfache .
Schritt 1.5.4
Ändere das zu .
Schritt 1.5.5
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.5.1
Schreibe als um.
Schritt 1.5.5.2
Faktorisiere aus heraus.
Schritt 1.5.5.3
Faktorisiere aus heraus.
Schritt 1.5.5.4
Schreibe als um.
Schritt 1.5.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.6
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 2
Um ein Polynom in Normalform zu schreiben, vereinfache es und ordne die Terme dann in absteigender Folge.
Schritt 3
Zerlege den Bruch in zwei Brüche.
Schritt 4
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Dividiere durch .
Schritt 4.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Vereinfache durch Ausmultiplizieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Wende das Distributivgesetz an.
Schritt 5.2
Mutltipliziere mit .
Schritt 6
Zerlege den Bruch in zwei Brüche.
Schritt 7
Dividiere durch .
Schritt 8
Wende das Distributivgesetz an.
Schritt 9
Mutltipliziere mit .
Schritt 10
Stelle die Terme um.
Schritt 11
Entferne die Klammern.
Schritt 12