Elementarmathematik Beispiele

Schreibe in Normalform y^2+6y+9=12-12x
Schritt 1
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Bringe alle Terme auf die linke Seite der Gleichung und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bringe alle Ausdrücke auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.1.1.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.1.2
Subtrahiere von .
Schritt 1.2
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 1.3
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 1.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.1
Potenziere mit .
Schritt 1.4.1.2
Mutltipliziere mit .
Schritt 1.4.1.3
Wende das Distributivgesetz an.
Schritt 1.4.1.4
Mutltipliziere mit .
Schritt 1.4.1.5
Mutltipliziere mit .
Schritt 1.4.1.6
Addiere und .
Schritt 1.4.1.7
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.7.1
Faktorisiere aus heraus.
Schritt 1.4.1.7.2
Faktorisiere aus heraus.
Schritt 1.4.1.7.3
Faktorisiere aus heraus.
Schritt 1.4.1.8
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1.8.1
Faktorisiere aus heraus.
Schritt 1.4.1.8.2
Schreibe als um.
Schritt 1.4.1.8.3
Schreibe als um.
Schritt 1.4.1.8.4
Füge Klammern hinzu.
Schritt 1.4.1.9
Ziehe Terme aus der Wurzel heraus.
Schritt 1.4.1.10
Potenziere mit .
Schritt 1.4.2
Mutltipliziere mit .
Schritt 1.4.3
Vereinfache .
Schritt 1.5
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.1
Potenziere mit .
Schritt 1.5.1.2
Mutltipliziere mit .
Schritt 1.5.1.3
Wende das Distributivgesetz an.
Schritt 1.5.1.4
Mutltipliziere mit .
Schritt 1.5.1.5
Mutltipliziere mit .
Schritt 1.5.1.6
Addiere und .
Schritt 1.5.1.7
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.7.1
Faktorisiere aus heraus.
Schritt 1.5.1.7.2
Faktorisiere aus heraus.
Schritt 1.5.1.7.3
Faktorisiere aus heraus.
Schritt 1.5.1.8
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1.8.1
Faktorisiere aus heraus.
Schritt 1.5.1.8.2
Schreibe als um.
Schritt 1.5.1.8.3
Schreibe als um.
Schritt 1.5.1.8.4
Füge Klammern hinzu.
Schritt 1.5.1.9
Ziehe Terme aus der Wurzel heraus.
Schritt 1.5.1.10
Potenziere mit .
Schritt 1.5.2
Mutltipliziere mit .
Schritt 1.5.3
Vereinfache .
Schritt 1.5.4
Ändere das zu .
Schritt 1.6
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.1.1
Potenziere mit .
Schritt 1.6.1.2
Mutltipliziere mit .
Schritt 1.6.1.3
Wende das Distributivgesetz an.
Schritt 1.6.1.4
Mutltipliziere mit .
Schritt 1.6.1.5
Mutltipliziere mit .
Schritt 1.6.1.6
Addiere und .
Schritt 1.6.1.7
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.1.7.1
Faktorisiere aus heraus.
Schritt 1.6.1.7.2
Faktorisiere aus heraus.
Schritt 1.6.1.7.3
Faktorisiere aus heraus.
Schritt 1.6.1.8
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.1.8.1
Faktorisiere aus heraus.
Schritt 1.6.1.8.2
Schreibe als um.
Schritt 1.6.1.8.3
Schreibe als um.
Schritt 1.6.1.8.4
Füge Klammern hinzu.
Schritt 1.6.1.9
Ziehe Terme aus der Wurzel heraus.
Schritt 1.6.1.10
Potenziere mit .
Schritt 1.6.2
Mutltipliziere mit .
Schritt 1.6.3
Vereinfache .
Schritt 1.6.4
Ändere das zu .
Schritt 1.7
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 2
Um ein Polynom in Normalform zu schreiben, vereinfache es und ordne die Terme dann in absteigender Folge.
Schritt 3
Die Standardform ist .
Schritt 4