Elementarmathematik Beispiele

Bestimme den Definitions- und Wertebereich (y^2)/9-(x^2)/25=1
Schritt 1
Addiere zu beiden Seiten der Gleichung.
Schritt 2
Multipliziere beide Seiten der Gleichung mit .
Schritt 3
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.1.2
Forme den Ausdruck um.
Schritt 3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Wende das Distributivgesetz an.
Schritt 3.2.1.2
Mutltipliziere mit .
Schritt 3.2.1.3
Kombiniere und .
Schritt 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 5
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.2
Kombiniere und .
Schritt 5.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.4
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Faktorisiere aus heraus.
Schritt 5.4.2
Faktorisiere aus heraus.
Schritt 5.4.3
Faktorisiere aus heraus.
Schritt 5.5
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Faktorisiere die perfekte Potenz aus heraus.
Schritt 5.5.2
Faktorisiere die perfekte Potenz aus heraus.
Schritt 5.5.3
Ordne den Bruch um.
Schritt 5.6
Ziehe Terme aus der Wurzel heraus.
Schritt 5.7
Potenziere mit .
Schritt 5.8
Kombiniere und .
Schritt 6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 6.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 6.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 7
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 8
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 8.2
Da die linke Seite eine gerade Potenz aufweist, ist sie immer positiv für alle reellen Zahlen.
Alle reellen Zahlen
Alle reellen Zahlen
Schritt 9
Der Definitionsbereich umfasst alle reellen Zahlen.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 10
Der Wertebereich ist die Menge aller gültigen -Werte. Ermittle den Wertebereich mithilfe des Graphen.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 11
Bestimme den Definitionsbereich und den Wertebereich.
Definitionsbereich:
Wertebereich:
Schritt 12