Elementarmathematik Beispiele

Wandle in Polarkoordinaten um (-5 Quadratwurzel von 2,5 Quadratwurzel von 2)
Schritt 1
Wandle von rechteckigen Koordinaten in Polarkoordinaten um unter Verwendung der Umrechnungsformeln.
Schritt 2
Ersetze und durch die tatsächlichen Werte.
Schritt 3
Ermittle den Betrag der Polarkoordinate.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Wende die Produktregel auf an.
Schritt 3.1.2
Potenziere mit .
Schritt 3.2
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Benutze , um als neu zu schreiben.
Schritt 3.2.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.3
Kombiniere und .
Schritt 3.2.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.4.2
Forme den Ausdruck um.
Schritt 3.2.5
Berechne den Exponenten.
Schritt 3.3
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Mutltipliziere mit .
Schritt 3.3.2
Wende die Produktregel auf an.
Schritt 3.3.3
Potenziere mit .
Schritt 3.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Benutze , um als neu zu schreiben.
Schritt 3.4.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.4.3
Kombiniere und .
Schritt 3.4.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.4.2
Forme den Ausdruck um.
Schritt 3.4.5
Berechne den Exponenten.
Schritt 3.5
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Mutltipliziere mit .
Schritt 3.5.2
Addiere und .
Schritt 3.5.3
Schreibe als um.
Schritt 3.5.4
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 4
Ersetze und durch die tatsächlichen Werte.
Schritt 5
Der inverse Tangens von ist .
Schritt 6
Dies ist das Ergebnis der Umwandlung in Polarkoordinaten in -Form.