Elementarmathematik Beispiele

Finde die Leitlinie y^2-4y+4x+4=0
Schritt 1
Schreibe die Gleichung in Scheitelform um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Isoliere auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.1.1.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.1.1.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.1.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Teile jeden Ausdruck in durch .
Schritt 1.1.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.2.2.1.2
Dividiere durch .
Schritt 1.1.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.3.1.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.1.2.3.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.3.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.2.3.1.2.2
Dividiere durch .
Schritt 1.1.2.3.1.3
Dividiere durch .
Schritt 1.2
Wende die quadratische Ergänzung auf an.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende die Form an, um die Werte für , und zu ermitteln.
Schritt 1.2.2
Betrachte die Scheitelform einer Parabel.
Schritt 1.2.3
Ermittle den Wert von mithilfe der Formel .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Setze die Werte von und in die Formel ein.
Schritt 1.2.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1.1
Schreibe als um.
Schritt 1.2.3.2.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.3.2.2
Kombiniere und .
Schritt 1.2.3.2.3
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.3.1
Faktorisiere aus heraus.
Schritt 1.2.3.2.3.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.3.2.1
Faktorisiere aus heraus.
Schritt 1.2.3.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.3.2.3
Forme den Ausdruck um.
Schritt 1.2.3.2.4
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 1.2.3.2.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.5.1
Mutltipliziere mit .
Schritt 1.2.3.2.5.2
Mutltipliziere mit .
Schritt 1.2.4
Ermittle den Wert von mithilfe der Formel .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Setze die Werte von , , und in die Formel ein.
Schritt 1.2.4.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1.1
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 1.2.4.2.1.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.2.1.2.1
Mutltipliziere mit .
Schritt 1.2.4.2.1.2.2
Kombiniere und .
Schritt 1.2.4.2.1.3
Dividiere durch .
Schritt 1.2.4.2.1.4
Dividiere durch .
Schritt 1.2.4.2.1.5
Mutltipliziere mit .
Schritt 1.2.4.2.2
Addiere und .
Schritt 1.2.5
Setze die Werte von , und in die Scheitelform ein.
Schritt 1.3
Setze gleich der neuen rechten Seite.
Schritt 2
Benutze die Scheitelpunktform, , um die Werte von , und zu ermitteln.
Schritt 3
Ermittle den Scheitelpunkt .
Schritt 4
Berechne , den Abstand vom Scheitelpunkt zum Brennpunkt.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ermittle den Abstand vom Scheitelpunkt zu einem Brennpunkt der Parabel durch Anwendung der folgenden Formel.
Schritt 4.2
Setze den Wert von in die Formel ein.
Schritt 4.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1.1
Schreibe als um.
Schritt 4.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.3.2
Kombiniere und .
Schritt 4.3.3
Dividiere durch .
Schritt 4.3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.4.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.4.2
Forme den Ausdruck um.
Schritt 4.3.5
Mutltipliziere mit .
Schritt 5
Finde die Leitlinie.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Die Leitlinie einer Parabel ist die vertikale Gerade, die durch Subtrahieren von von der x-Koordinate des Scheitelpunkts ermittelt wird, wenn die Parabel nach links oder rechts geöffnet ist.
Schritt 5.2
Setze die bekannten Werte von und in die Formel ein und vereinfache.
Schritt 6