Elementarmathematik Beispiele

Bestimme den Wert der trigonometrischen Funktion sec(theta)=(2 Quadratwurzel von 3)/3
Schritt 1
Benutze die Definition des Sekans, um die bekannten Seiten des rechtwinkligen Dreiecks im Einheitskreis zu ermitteln. Der Quadrant bestimmt das Vorzeichen jedes Wertes.
Schritt 2
Berechne die Gegenkathete des Dreiecks im Einheitskreis. Da die Ankathete und die Hypotenuse bekannt sind, kannst du den Satz des Pythagoras anwenden, um die verbleibende Seite zu berechnen.
Schritt 3
Ersetze die bekannten Werte in der Gleichung.
Schritt 4
Vereinfache den Ausdruck unter dem Wurzelzeichen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Wende die Produktregel auf an.
Gegenkathete
Schritt 4.2
Potenziere mit .
Gegenkathete
Schritt 4.3
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Benutze , um als neu zu schreiben.
Gegenkathete
Schritt 4.3.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Gegenkathete
Schritt 4.3.3
Kombiniere und .
Gegenkathete
Schritt 4.3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.4.1
Kürze den gemeinsamen Faktor.
Gegenkathete
Schritt 4.3.4.2
Forme den Ausdruck um.
Gegenkathete
Gegenkathete
Schritt 4.3.5
Berechne den Exponenten.
Gegenkathete
Gegenkathete
Schritt 4.4
Mutltipliziere mit .
Gegenkathete
Schritt 4.5
Potenziere mit .
Gegenkathete
Schritt 4.6
Mutltipliziere mit .
Gegenkathete
Schritt 4.7
Subtrahiere von .
Gegenkathete
Gegenkathete
Schritt 5
Ermittle den Wert des Sinus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Bestimme den Wert von mithilfe der Definition des Sinus.
Schritt 5.2
Setze die bekannten Werte ein.
Schritt 5.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2
Forme den Ausdruck um.
Schritt 6
Berechne den Wert des Kosinus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Bestimme den Wert von mithilfe der Definition des Kosinus.
Schritt 6.2
Setze die bekannten Werte ein.
Schritt 6.3
Vereinfache den Wert von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Mutltipliziere mit .
Schritt 6.3.2
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Mutltipliziere mit .
Schritt 6.3.2.2
Bewege .
Schritt 6.3.2.3
Potenziere mit .
Schritt 6.3.2.4
Potenziere mit .
Schritt 6.3.2.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.3.2.6
Addiere und .
Schritt 6.3.2.7
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.7.1
Benutze , um als neu zu schreiben.
Schritt 6.3.2.7.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.3.2.7.3
Kombiniere und .
Schritt 6.3.2.7.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.7.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2.7.4.2
Forme den Ausdruck um.
Schritt 6.3.2.7.5
Berechne den Exponenten.
Schritt 6.3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.3.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.3.2
Forme den Ausdruck um.
Schritt 7
Bestimme den Wert des Tangens.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Benutze die Definition des Tangens, um den Wert von zu ermitteln.
Schritt 7.2
Setze die bekannten Werte ein.
Schritt 8
Berechne den Wert des Kotangens.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Bestimme den Wert von mithilfe der Definition des Kotangens.
Schritt 8.2
Setze die bekannten Werte ein.
Schritt 8.3
Vereinfache den Wert von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1
Mutltipliziere mit .
Schritt 8.3.2
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.2.1
Mutltipliziere mit .
Schritt 8.3.2.2
Potenziere mit .
Schritt 8.3.2.3
Potenziere mit .
Schritt 8.3.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 8.3.2.5
Addiere und .
Schritt 8.3.2.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.2.6.1
Benutze , um als neu zu schreiben.
Schritt 8.3.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 8.3.2.6.3
Kombiniere und .
Schritt 8.3.2.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 8.3.2.6.4.2
Forme den Ausdruck um.
Schritt 8.3.2.6.5
Berechne den Exponenten.
Schritt 8.3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.3.1
Kürze den gemeinsamen Faktor.
Schritt 8.3.3.2
Dividiere durch .
Schritt 9
Berechne den Wert des Kosekans.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Bestimme den Wert von mithilfe der Definition des Kosekans.
Schritt 9.2
Setze die bekannten Werte ein.
Schritt 9.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.3.1
Kürze den gemeinsamen Faktor.
Schritt 9.3.2
Dividiere durch .
Schritt 10
Das ist die Lösung zu jedem trigonometrischen Wert.