Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Die Summe einer endlichen geometrischen Reihe kann mit der Formel gefunden werden, wobei der erste Term und das Verhältnis zwischen den aufeinanderfolgenden Termen ist.
Schritt 2
Schritt 2.1
Setze und in die Formel für ein.
Schritt 2.2
Vereinfache.
Schritt 2.2.1
Kürze den gemeinsamen Teiler von und .
Schritt 2.2.1.1
Faktorisiere aus heraus.
Schritt 2.2.1.2
Kürze die gemeinsamen Faktoren.
Schritt 2.2.1.2.1
Multipliziere mit .
Schritt 2.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2.3
Forme den Ausdruck um.
Schritt 2.2.1.2.4
Dividiere durch .
Schritt 2.2.2
Vereinfache jeden Term.
Schritt 2.2.2.1
Wende das Distributivgesetz an.
Schritt 2.2.2.2
Mutltipliziere mit .
Schritt 2.2.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 2.2.3.1
Subtrahiere von .
Schritt 2.2.3.2
Addiere und .
Schritt 2.2.4
Potenziere mit .
Schritt 3
Schritt 3.1
Setze für in ein.
Schritt 3.2
Vereinfache.
Schritt 3.2.1
Mutltipliziere mit .
Schritt 3.2.2
Potenziere mit .
Schritt 4
Ersetze die Werte des Verhältnisses, des ersten Terms und die Anzahl der Terme in der Summenformel.
Schritt 5
Schritt 5.1
Vereinfache den Nenner.
Schritt 5.1.1
Mutltipliziere mit .
Schritt 5.1.2
Subtrahiere von .
Schritt 5.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.3
Multipliziere .
Schritt 5.3.1
Mutltipliziere mit .
Schritt 5.3.2
Kombiniere und .
Schritt 5.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: