Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Wandle die Ungleichung in eine Gleichung um.
Schritt 2
Schritt 2.1
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 2.2
Löse nach auf.
Schritt 2.2.1
Schreibe die Gleichung als um.
Schritt 2.2.2
Potenziere mit .
Schritt 2.2.3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 2.2.3.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2.3.2
Addiere und .
Schritt 2.2.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 2.2.4.1
Teile jeden Ausdruck in durch .
Schritt 2.2.4.2
Vereinfache die linke Seite.
Schritt 2.2.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.4.2.1.2
Dividiere durch .
Schritt 2.2.4.3
Vereinfache die rechte Seite.
Schritt 2.2.4.3.1
Dividiere durch .
Schritt 3
Schritt 3.1
Setze das Argument in größer als , um zu ermitteln. wo der Ausdruck definiert ist.
Schritt 3.2
Löse nach auf.
Schritt 3.2.1
Addiere auf beiden Seiten der Ungleichung.
Schritt 3.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.2.2.1
Teile jeden Ausdruck in durch .
Schritt 3.2.2.2
Vereinfache die linke Seite.
Schritt 3.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.2.1.2
Dividiere durch .
Schritt 3.2.2.3
Vereinfache die rechte Seite.
Schritt 3.2.2.3.1
Dividiere durch .
Schritt 3.3
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Schritt 4
Verwende jede Wurzel, um Testintervalle zu erzeugen.
Schritt 5
Schritt 5.1
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 5.1.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 5.1.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 5.1.3
Bestimme, ob die Ungleichung erfüllt ist.
Schritt 5.1.3.1
Die Gleichung kann nicht gelöst werden, da sie nicht definiert ist.
Schritt 5.1.3.2
Die linke Seite hat keine Lösung, was bedeutet, dass die gegebene Aussage falsch ist.
False
False
False
Schritt 5.2
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 5.2.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 5.2.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 5.2.3
Die linke Seite ist kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage immer wahr ist.
True
True
Schritt 5.3
Teste einen Wert im Intervall , um zu sehen, ob er die Ungleichung erfüllt.
Schritt 5.3.1
Wähle einen Wert aus dem Intervall und stelle fest, ob dieser Wert die ursprüngliche Ungleichung erfüllt.
Schritt 5.3.2
Ersetze durch in der ursprünglichen Ungleichung.
Schritt 5.3.3
Die linke Seite ist nicht kleiner als die rechte Seite , was bedeutet, dass die gegebene Aussage falsch ist.
False
False
Schritt 5.4
Vergleiche die Intervalle, um zu ermitteln, welche die ursprüngliche Ungleichung erfüllen.
Falsch
Wahr
Falsch
Falsch
Wahr
Falsch
Schritt 6
Die Lösung besteht aus allen wahren Intervallen.
Schritt 7
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Ungleichungsform:
Intervallschreibweise:
Schritt 8