Elementarmathematik Beispiele

x 구하기 -4/(x-1)=7/(2-x)+3/(x+1)
Schritt 1
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 1.2
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 1.3
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 1.4
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 1.5
Der Teiler von ist selbst.
occurs time.
Schritt 1.6
Der Teiler von ist selbst.
occurs time.
Schritt 1.7
Der Teiler von ist selbst.
occurs time.
Schritt 1.8
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Faktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Multipliziere jeden Term in mit .
Schritt 2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 2.2.1.2
Faktorisiere aus heraus.
Schritt 2.2.1.3
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.4
Forme den Ausdruck um.
Schritt 2.2.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Wende das Distributivgesetz an.
Schritt 2.2.2.2
Wende das Distributivgesetz an.
Schritt 2.2.2.3
Wende das Distributivgesetz an.
Schritt 2.2.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1.1
Mutltipliziere mit .
Schritt 2.2.3.1.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1.2.1
Bewege .
Schritt 2.2.3.1.2.2
Mutltipliziere mit .
Schritt 2.2.3.1.3
Mutltipliziere mit .
Schritt 2.2.3.2
Subtrahiere von .
Schritt 2.2.4
Wende das Distributivgesetz an.
Schritt 2.2.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.5.1
Mutltipliziere mit .
Schritt 2.2.5.2
Mutltipliziere mit .
Schritt 2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1.1
Faktorisiere aus heraus.
Schritt 2.3.1.1.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.1.3
Forme den Ausdruck um.
Schritt 2.3.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.2.1
Wende das Distributivgesetz an.
Schritt 2.3.1.2.2
Wende das Distributivgesetz an.
Schritt 2.3.1.2.3
Wende das Distributivgesetz an.
Schritt 2.3.1.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.3.1
Ordne die Faktoren in den Termen und neu an.
Schritt 2.3.1.3.2
Subtrahiere von .
Schritt 2.3.1.3.3
Addiere und .
Schritt 2.3.1.4
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.4.1
Mutltipliziere mit .
Schritt 2.3.1.4.2
Mutltipliziere mit .
Schritt 2.3.1.5
Wende das Distributivgesetz an.
Schritt 2.3.1.6
Mutltipliziere mit .
Schritt 2.3.1.7
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.7.1
Faktorisiere aus heraus.
Schritt 2.3.1.7.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.7.3
Forme den Ausdruck um.
Schritt 2.3.1.8
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.8.1
Wende das Distributivgesetz an.
Schritt 2.3.1.8.2
Wende das Distributivgesetz an.
Schritt 2.3.1.8.3
Wende das Distributivgesetz an.
Schritt 2.3.1.9
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.9.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.9.1.1
Bringe auf die linke Seite von .
Schritt 2.3.1.9.1.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.3.1.9.1.3
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.9.1.3.1
Bewege .
Schritt 2.3.1.9.1.3.2
Mutltipliziere mit .
Schritt 2.3.1.9.1.4
Mutltipliziere mit .
Schritt 2.3.1.9.1.5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.9.1.5.1
Mutltipliziere mit .
Schritt 2.3.1.9.1.5.2
Mutltipliziere mit .
Schritt 2.3.1.9.2
Addiere und .
Schritt 2.3.1.10
Wende das Distributivgesetz an.
Schritt 2.3.1.11
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.11.1
Mutltipliziere mit .
Schritt 2.3.1.11.2
Mutltipliziere mit .
Schritt 2.3.1.11.3
Mutltipliziere mit .
Schritt 2.3.2
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Subtrahiere von .
Schritt 2.3.2.2
Subtrahiere von .
Schritt 3
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.3.1
Subtrahiere von .
Schritt 3.1.3.2
Addiere und .
Schritt 3.1.4
Subtrahiere von .
Schritt 3.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2.2
Addiere und .
Schritt 3.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Teile jeden Ausdruck in durch .
Schritt 3.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2.1.2
Dividiere durch .
Schritt 3.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 4
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: