Elementarmathematik Beispiele

x 구하기 sec(x)^2-8sec(x)=0
Schritt 1
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ersetze für alle .
Schritt 1.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Faktorisiere aus heraus.
Schritt 1.2.2
Faktorisiere aus heraus.
Schritt 1.2.3
Faktorisiere aus heraus.
Schritt 1.3
Ersetze alle durch .
Schritt 2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze gleich .
Schritt 3.2
Der Wertebereich des Sekans ist und . Da nicht in diesen Bereich fällt, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Schritt 4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Setze gleich .
Schritt 4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.2.2
Bilde den inversen Sekans von beiden Seiten der Gleichung, um aus dem Sekans zu ziehen.
Schritt 4.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Berechne .
Schritt 4.2.4
DIe Sekans-Funktion ist im ersten und vierten Quadranten positiv. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 4.2.5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.5.1
Entferne die Klammern.
Schritt 4.2.5.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.5.2.1
Mutltipliziere mit .
Schritt 4.2.5.2.2
Subtrahiere von .
Schritt 4.2.6
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 4.2.6.2
Ersetze durch in der Formel für die Periode.
Schritt 4.2.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 4.2.6.4
Dividiere durch .
Schritt 4.2.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 5
Die endgültige Lösung sind alle Werte, die wahr machen.
, für jede ganze Zahl