Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Addiere zu beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Das kleinste gemeinsame Vielfache eines beliebigen Ausdrucks ist der Ausdruck.
Schritt 3
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Schritt 3.2.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.2.1.1
Bewege .
Schritt 3.2.1.2
Mutltipliziere mit .
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Vereinfache jeden Term.
Schritt 3.3.1.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.1.2
Forme den Ausdruck um.
Schritt 3.3.1.2
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.3
Faktorisiere durch Gruppieren.
Schritt 4.3.1
Für ein Polynom der Form schreibe den mittleren Term als eine Summe zweier Terme um, deren Produkt gleich und deren Summe gleich ist.
Schritt 4.3.1.1
Faktorisiere aus heraus.
Schritt 4.3.1.2
Schreibe um als plus
Schritt 4.3.1.3
Wende das Distributivgesetz an.
Schritt 4.3.2
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Schritt 4.3.2.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 4.3.2.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 4.3.3
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 4.4
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4.5
Setze gleich und löse nach auf.
Schritt 4.5.1
Setze gleich .
Schritt 4.5.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.6
Setze gleich und löse nach auf.
Schritt 4.6.1
Setze gleich .
Schritt 4.6.2
Löse nach auf.
Schritt 4.6.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.6.2.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 4.6.2.2.1
Teile jeden Ausdruck in durch .
Schritt 4.6.2.2.2
Vereinfache die linke Seite.
Schritt 4.6.2.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 4.6.2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.6.2.2.2.1.2
Dividiere durch .
Schritt 4.7
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 5
Stelle jede der Lösungen auf, um sie nach aufzulösen.
Schritt 6
Schritt 6.1
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 6.2
Vereinfache die rechte Seite.
Schritt 6.2.1
Der genau Wert von ist .
Schritt 6.3
Die Sinusfunktion ist negativ im dritten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere die Lösung von , um einen Referenzwinkel zu ermitteln. Addiere als nächstes diesen Referenzwinkel zu , um die Lösung im dritten Quadranten zu finden.
Schritt 6.4
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Schritt 6.4.1
Subtrahiere von .
Schritt 6.4.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 6.5
Ermittele die Periode von .
Schritt 6.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 6.5.2
Ersetze durch in der Formel für die Periode.
Schritt 6.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 6.5.4
Dividiere durch .
Schritt 6.6
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Schritt 6.6.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 6.6.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.6.3
Kombiniere Brüche.
Schritt 6.6.3.1
Kombiniere und .
Schritt 6.6.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.6.4
Vereinfache den Zähler.
Schritt 6.6.4.1
Mutltipliziere mit .
Schritt 6.6.4.2
Subtrahiere von .
Schritt 6.6.5
Liste die neuen Winkel auf.
Schritt 6.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 7
Schritt 7.1
Der Wertebereich des Sinus ist . Da nicht in diesen Bereich fällt, gibt es keine Lösung.
Keine Lösung
Keine Lösung
Schritt 8
Liste alle Lösungen auf.
, für jede ganze Zahl
Schritt 9
Fasse die Ergebnisse zusammen.
, für jede ganze Zahl