Elementarmathematik Beispiele

a 구하기 (3a-1)/(a^2+4a+4)-3/(a^2+2a)=3/a
Schritt 1
Faktorisiere jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Schreibe als um.
Schritt 1.1.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 1.1.3
Schreibe das Polynom neu.
Schritt 1.1.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 1.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Faktorisiere aus heraus.
Schritt 1.2.2
Faktorisiere aus heraus.
Schritt 1.2.3
Faktorisiere aus heraus.
Schritt 2
Finde den Hauptnenner der Terme in der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
Schritte, um das kgV für zu finden, sind:
1. Finde das kgV für den numerischen Teil .
2. Finde das kgV für den variablen Teil .
Finde das kgV für den zusammengesetzten variablen Teil .
4. Multipliziere jedes kgV miteinander.
Schritt 2.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 2.4
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 2.5
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 2.6
Der Teiler von ist selbst.
occurs time.
Schritt 2.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2.8
Die Teiler von sind , was -mal mit sich selbst multipliziert ist.
tritt -mal auf.
Schritt 2.9
Der Teiler von ist selbst.
occurs time.
Schritt 2.10
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Faktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2.11
Das kleinste gemeinsame Vielfache einer Reihe von Zahlen ist die kleinste Zahl, von der die Zahlen Teiler sind.
Schritt 3
Multipliziere jeden Term in mit um die Brüche zu eliminieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.1
Faktorisiere aus heraus.
Schritt 3.2.1.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.3
Forme den Ausdruck um.
Schritt 3.2.1.2
Wende das Distributivgesetz an.
Schritt 3.2.1.3
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.3.1
Bewege .
Schritt 3.2.1.3.2
Mutltipliziere mit .
Schritt 3.2.1.4
Schreibe als um.
Schritt 3.2.1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.5.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.5.2
Faktorisiere aus heraus.
Schritt 3.2.1.5.3
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.5.4
Forme den Ausdruck um.
Schritt 3.2.1.6
Wende das Distributivgesetz an.
Schritt 3.2.1.7
Mutltipliziere mit .
Schritt 3.2.2
Subtrahiere von .
Schritt 3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Faktorisiere aus heraus.
Schritt 3.3.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.3
Forme den Ausdruck um.
Schritt 4
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Forme um.
Schritt 4.1.2
Schreibe als um.
Schritt 4.1.3
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.3.1
Wende das Distributivgesetz an.
Schritt 4.1.3.2
Wende das Distributivgesetz an.
Schritt 4.1.3.3
Wende das Distributivgesetz an.
Schritt 4.1.4
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.4.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.4.1.1
Mutltipliziere mit .
Schritt 4.1.4.1.2
Bringe auf die linke Seite von .
Schritt 4.1.4.1.3
Mutltipliziere mit .
Schritt 4.1.4.2
Addiere und .
Schritt 4.1.5
Wende das Distributivgesetz an.
Schritt 4.1.6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.6.1
Mutltipliziere mit .
Schritt 4.1.6.2
Mutltipliziere mit .
Schritt 4.2
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2.3
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Subtrahiere von .
Schritt 4.2.3.2
Addiere und .
Schritt 4.2.4
Subtrahiere von .
Schritt 4.3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.3.2
Addiere und .
Schritt 4.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.1
Teile jeden Ausdruck in durch .
Schritt 4.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.4.2.1.2
Dividiere durch .
Schritt 4.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.3.1.1
Faktorisiere aus heraus.
Schritt 4.4.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.4.3.1.2.1
Faktorisiere aus heraus.
Schritt 4.4.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.4.3.1.2.3
Forme den Ausdruck um.
Schritt 4.4.3.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 5
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Darstellung als gemischte Zahl: