Elementarmathematik Beispiele

x 구하기 y=(|x|)/( Quadratwurzel von c-x^2)
Schritt 1
Schreibe die Gleichung als um.
Schritt 2
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Mutltipliziere mit .
Schritt 2.2
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Mutltipliziere mit .
Schritt 2.2.2
Potenziere mit .
Schritt 2.2.3
Potenziere mit .
Schritt 2.2.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.5
Addiere und .
Schritt 2.2.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.6.1
Benutze , um als neu zu schreiben.
Schritt 2.2.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.6.3
Kombiniere und .
Schritt 2.2.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.6.4.2
Forme den Ausdruck um.
Schritt 2.2.6.5
Vereinfache.
Schritt 3
Benutze , um als neu zu schreiben.
Schritt 4
Reduce .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Faktorisiere aus heraus.
Schritt 4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Multipliziere mit .
Schritt 4.2.2
Kürze den gemeinsamen Faktor.
Schritt 4.2.3
Forme den Ausdruck um.
Schritt 4.2.4
Dividiere durch .
Schritt 5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Teile jeden Ausdruck in durch .
Schritt 5.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.2.1.2
Dividiere durch .
Schritt 5.1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.1
Bringe in den Zähler mithilfe der Regel des negativen Exponenten .
Schritt 5.2
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.