Elementarmathematik Beispiele

x 구하기 csc(x)^2=4/3
Schritt 1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Schreibe als um.
Schritt 2.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Schreibe als um.
Schritt 2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 2.3
Mutltipliziere mit .
Schritt 2.4
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Mutltipliziere mit .
Schritt 2.4.2
Potenziere mit .
Schritt 2.4.3
Potenziere mit .
Schritt 2.4.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.4.5
Addiere und .
Schritt 2.4.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.1
Benutze , um als neu zu schreiben.
Schritt 2.4.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.4.6.3
Kombiniere und .
Schritt 2.4.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 2.4.6.4.2
Forme den Ausdruck um.
Schritt 2.4.6.5
Berechne den Exponenten.
Schritt 3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Stelle jede der Lösungen auf, um sie nach aufzulösen.
Schritt 5
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Wende den inversen Kosekans auf beide Seiten der Gleichung an, um aus dem Kosekans herauszuziehen.
Schritt 5.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Der genau Wert von ist .
Schritt 5.3
Die Kosekansfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 5.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 5.4.2
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1
Kombiniere und .
Schritt 5.4.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 5.4.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.3.1
Bringe auf die linke Seite von .
Schritt 5.4.3.2
Subtrahiere von .
Schritt 5.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 5.5.2
Ersetze durch in der Formel für die Periode.
Schritt 5.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 5.5.4
Dividiere durch .
Schritt 5.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 6
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Wende den inversen Kosekans auf beide Seiten der Gleichung an, um aus dem Kosekans herauszuziehen.
Schritt 6.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Der genau Wert von ist .
Schritt 6.3
The cosecant function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Schritt 6.4
Vereinfache den Ausdruck, um die zweite Lösung zu ermitteln.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Subtrahiere von .
Schritt 6.4.2
Der resultierende Winkel von ist positiv, kleiner als und gleich .
Schritt 6.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 6.5.2
Ersetze durch in der Formel für die Periode.
Schritt 6.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 6.5.4
Dividiere durch .
Schritt 6.6
Addiere zu jedem negativen Winkel, um positive Winkel zu erhalten.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.6.1
Addiere zu , um den positiven Winkel zu bestimmen.
Schritt 6.6.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 6.6.3
Kombiniere Brüche.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.6.3.1
Kombiniere und .
Schritt 6.6.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.6.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.6.4.1
Mutltipliziere mit .
Schritt 6.6.4.2
Subtrahiere von .
Schritt 6.6.5
Liste die neuen Winkel auf.
Schritt 6.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl
Schritt 7
Liste alle Lösungen auf.
, für jede ganze Zahl
Schritt 8
Fasse die Lösungen zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Führe und zu zusammen.
, für jede ganze Zahl
Schritt 8.2
Führe und zu zusammen.
, für jede ganze Zahl
, für jede ganze Zahl