Elementarmathematik Beispiele

x 구하기 Logarithmus von x-3+ Logarithmus von 2x-5 = logarithmische Basis 3 von 1+6^( logarithmische Basis 6 von 2)
Schritt 1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Wende die Produktregel für Logarithmen an, .
Schritt 1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Wende das Distributivgesetz an.
Schritt 1.2.2
Wende das Distributivgesetz an.
Schritt 1.2.3
Wende das Distributivgesetz an.
Schritt 1.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 1.3.1.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1.2.1
Bewege .
Schritt 1.3.1.2.2
Mutltipliziere mit .
Schritt 1.3.1.3
Bringe auf die linke Seite von .
Schritt 1.3.1.4
Mutltipliziere mit .
Schritt 1.3.1.5
Mutltipliziere mit .
Schritt 1.3.2
Subtrahiere von .
Schritt 2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Die logarithmische Basis von ist .
Schritt 2.1.2
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 2.2
Addiere und .
Schritt 3
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Potenziere mit .
Schritt 4.3
Bringe alle Terme auf die linke Seite der Gleichung und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.3.2
Subtrahiere von .
Schritt 4.4
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 4.5
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 4.6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1.1
Potenziere mit .
Schritt 4.6.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1.2.1
Mutltipliziere mit .
Schritt 4.6.1.2.2
Mutltipliziere mit .
Schritt 4.6.1.3
Addiere und .
Schritt 4.6.1.4
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.6.1.4.1
Faktorisiere aus heraus.
Schritt 4.6.1.4.2
Schreibe als um.
Schritt 4.6.1.5
Ziehe Terme aus der Wurzel heraus.
Schritt 4.6.2
Mutltipliziere mit .
Schritt 4.7
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 5
Schließe die Lösungen aus, die nicht erfüllen.
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform: