Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 2
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3
Schritt 3.1
Schreibe die Gleichung als um.
Schritt 3.2
Alles, was mit potenziert wird, ist .
Schritt 3.3
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 3.4
Vereinfache die rechte Seite.
Schritt 3.4.1
Der genau Wert von ist .
Schritt 3.5
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 3.6
Vereinfache .
Schritt 3.6.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.6.2
Kombiniere Brüche.
Schritt 3.6.2.1
Kombiniere und .
Schritt 3.6.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.6.3
Vereinfache den Zähler.
Schritt 3.6.3.1
Bringe auf die linke Seite von .
Schritt 3.6.3.2
Subtrahiere von .
Schritt 3.7
Ermittele die Periode von .
Schritt 3.7.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 3.7.2
Ersetze durch in der Formel für die Periode.
Schritt 3.7.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 3.7.4
Dividiere durch .
Schritt 3.8
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede ganze Zahl
, für jede ganze Zahl