Elementarmathematik Beispiele

y 구하기 (y^2+4y)^2+7(y^2+4y)+12=0
Schritt 1
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Es sei . Ersetze für alle .
Schritt 1.2
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 1.2.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 1.3
Ersetze alle durch .
Schritt 2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze gleich .
Schritt 3.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 3.2.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 3.2.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 3.2.3
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.3.1
Setze gleich .
Schritt 3.2.3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2.4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.4.1
Setze gleich .
Schritt 3.2.4.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.2.5
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 4
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Setze gleich .
Schritt 4.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Schreibe als um.
Schritt 4.2.1.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 4.2.1.3
Schreibe das Polynom neu.
Schritt 4.2.1.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 4.2.2
Setze gleich .
Schritt 4.2.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 5
Die endgültige Lösung sind alle Werte, die wahr machen.