Gib eine Aufgabe ein ...
Elementarmathematik Beispiele
Schritt 1
Schritt 1.1
Kombiniere und .
Schritt 1.2
Da eine ungerade Funktion ist, schreibe als .
Schritt 2
Für jedes existieren vertikale Asymptoten bei , wobei eine Ganzzahl ist. Verwende die Grundperiode für , , um die vertikalen Asymptoten für zu ermitteln. Setze das Innere der Kosekans-Funktion, , für gleich , um zu bestimmen, wo die vertikalen Asymptoten für auftreten.
Schritt 3
Setze den Zähler gleich Null.
Schritt 4
Setze das Innere der Kosekansfunktion gleich .
Schritt 5
Schritt 5.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 5.2
Vereinfache beide Seiten der Gleichung.
Schritt 5.2.1
Vereinfache die linke Seite.
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 5.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.1.2
Forme den Ausdruck um.
Schritt 5.2.2
Vereinfache die rechte Seite.
Schritt 5.2.2.1
Mutltipliziere mit .
Schritt 6
Die fundamentale Periode für tritt auf bei , wobei und vertikale Asymptoten sind.
Schritt 7
Schritt 7.1
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 7.2
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 7.3
Mutltipliziere mit .
Schritt 8
Die vertikalen Asymptoten für treten auf bei , und jedem , wobei eine Ganzzahl ist. Das ist die Hälfte der Periode.
Schritt 9
Der Kosekans hat nur vertikale Asymptoten.
Keine horizontalen Asymptoten
Keine schiefen Asymptoten
Vertikale Asymptoten: , wobei eine Ganzzahl ist
Schritt 10