Elementarmathematik Beispiele

Finde die Asymptoten f(x)=4csc(2pix-pi)
Schritt 1
Für jedes existieren vertikale Asymptoten bei , wobei eine Ganzzahl ist. Verwende die Grundperiode für , , um die vertikalen Asymptoten für zu ermitteln. Setze das Innere der Kosekans-Funktion, , für gleich , um zu bestimmen, wo die vertikalen Asymptoten für auftreten.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Teile jeden Ausdruck in durch .
Schritt 2.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.1.2
Forme den Ausdruck um.
Schritt 2.2.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.2.2.2
Dividiere durch .
Schritt 2.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.3.1.2
Forme den Ausdruck um.
Schritt 3
Setze das Innere der Kosekansfunktion gleich .
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 4.1.2
Addiere und .
Schritt 4.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Teile jeden Ausdruck in durch .
Schritt 4.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.1.2
Forme den Ausdruck um.
Schritt 4.2.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.2.2.2
Dividiere durch .
Schritt 4.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.3.1.2
Forme den Ausdruck um.
Schritt 5
Die fundamentale Periode für tritt auf bei , wobei und vertikale Asymptoten sind.
Schritt 6
Ermittle die Periode , um herauszufinden, wo die vertikalen Asymptoten existieren. Vertikale Asymptoten treten jede halbe Periode auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
ist ungefähr , was positiv ist, also entferne den Absolutwert
Schritt 6.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.2
Forme den Ausdruck um.
Schritt 6.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.2
Forme den Ausdruck um.
Schritt 7
Die vertikalen Asymptoten für treten auf bei , und jedem , wobei eine Ganzzahl ist. Das ist die Hälfte der Periode.
Schritt 8
Der Kosekans hat nur vertikale Asymptoten.
Keine horizontalen Asymptoten
Keine schiefen Asymptoten
Vertikale Asymptoten: , wobei eine Ganzzahl ist
Schritt 9