Elementarmathematik Beispiele

Finde die Nullstellen sin(2x)=2sin(x)
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Wende die Doppelwinkelfunktion für den Sinus an.
Schritt 3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Faktorisiere aus heraus.
Schritt 3.2
Faktorisiere aus heraus.
Schritt 4
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 5
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Setze gleich .
Schritt 5.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 5.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Der genau Wert von ist .
Schritt 5.2.3
Die Sinusfunktion ist positiv im ersten und zweiten Quadranten. Um die zweite Lösung zu ermitteln, subtrahiere den Referenzwinkel von , um die Lösung im zweiten Quadranten zu finden.
Schritt 5.2.4
Subtrahiere von .
Schritt 5.2.5
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.5.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 5.2.5.2
Ersetze durch in der Formel für die Periode.
Schritt 5.2.5.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 5.2.5.4
Dividiere durch .
Schritt 5.2.6
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 6
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Setze gleich .
Schritt 6.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 6.2.2
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 6.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.3.1
Der genau Wert von ist .
Schritt 6.2.4
Die Kosinusfunktion ist positiv im ersten und vierten Quadranten. Um die zweite Lösung zu finden, subtrahiere den Referenzwinkel von , um die Lösung im vierten Quadranten zu finden.
Schritt 6.2.5
Subtrahiere von .
Schritt 6.2.6
Ermittele die Periode von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.6.1
Die Periode der Funktion kann mithilfe von berechnet werden.
Schritt 6.2.6.2
Ersetze durch in der Formel für die Periode.
Schritt 6.2.6.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 6.2.6.4
Dividiere durch .
Schritt 6.2.7
Die Periode der Funktion ist , d. h., Werte werden sich alle rad in beide Richtungen wiederholen.
, für jede Ganzzahl
, für jede Ganzzahl
, für jede Ganzzahl
Schritt 7
Die endgültige Lösung sind alle Werte, die wahr machen.
, für jede Ganzzahl
Schritt 8
Fasse die Ergebnisse zusammen.
, für jede Ganzzahl
Schritt 9