Elementarmathematik Beispiele

Bestimme die x- und y-Achsenabschnitte (x-2)^2-(y-1)^2=9
Schritt 1
Bestimme die Schnittpunkte mit der x-Achse.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Um den/die Schnittpunkt(e) mit der x-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 1.2
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.2
Subtrahiere von .
Schritt 1.2.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 1.2.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Potenziere mit .
Schritt 1.2.4.2
Addiere und .
Schritt 1.2.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 1.2.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.5.3
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 1.2.5.4
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.5.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 1.3
Schnittpunkt(e) mit der x-Achse in Punkt-Form.
Schnittpunkt(e) mit der x-Achse:
Schnittpunkt(e) mit der x-Achse:
Schritt 2
Bestimme die Schnittpunkte mit der y-Achse.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um den/die Schnittpunkt(e) mit der y-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 2.2
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Subtrahiere von .
Schritt 2.2.2.1.2
Potenziere mit .
Schritt 2.2.2.1.3
Mutltipliziere mit .
Schritt 2.2.2.2
Subtrahiere von .
Schritt 2.2.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Teile jeden Ausdruck in durch .
Schritt 2.2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 2.2.3.2.2
Dividiere durch .
Schritt 2.2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.3.1
Dividiere durch .
Schritt 2.2.4
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 2.2.5
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.5.1
Schreibe als um.
Schritt 2.2.5.2
Schreibe als um.
Schritt 2.2.5.3
Schreibe als um.
Schritt 2.2.6
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.6.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 2.2.6.2
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2.6.3
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 2.2.6.4
Addiere zu beiden Seiten der Gleichung.
Schritt 2.2.6.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 2.3
Um den/die Schnittpunkt(e) mit der y-Achse zu bestimmen, setze für ein und löse nach auf.
Schnittpunkt(e) mit der y-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 3
Führe die Schnittpunkte auf.
Schnittpunkt(e) mit der x-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 4