Elementarmathematik Beispiele

Bestimme die x- und y-Achsenabschnitte y=7(2^(4x-10))-28
Schritt 1
Bestimme die Schnittpunkte mit der x-Achse.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Um den/die Schnittpunkt(e) mit der x-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 1.2
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Schreibe die Gleichung als um.
Schritt 1.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Teile jeden Ausdruck in durch .
Schritt 1.2.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.3.2.1.2
Dividiere durch .
Schritt 1.2.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.3.1
Dividiere durch .
Schritt 1.2.4
Erzeuge äquivalente Ausdrücke in der Gleichung, die alle gleiche Basen haben.
Schritt 1.2.5
Da die Basen gleich sind, sind zwei Ausdrücke nur dann gleich, wenn die Exponenten auch gleich sind.
Schritt 1.2.6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.6.1.2
Addiere und .
Schritt 1.2.6.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.6.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.6.2.2.1.2
Dividiere durch .
Schritt 1.2.6.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.2.3.1
Dividiere durch .
Schritt 1.3
Schnittpunkt(e) mit der x-Achse in Punkt-Form.
Schnittpunkt(e) mit der x-Achse:
Schnittpunkt(e) mit der x-Achse:
Schritt 2
Bestimme die Schnittpunkte mit der y-Achse.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Um den/die Schnittpunkt(e) mit der y-Achse zu bestimmen, setze für ein und löse nach auf.
Schritt 2.2
Löse die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Multipliziere mit .
Schritt 2.2.2
Entferne die Klammern.
Schritt 2.2.3
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1.1
Mutltipliziere mit .
Schritt 2.2.3.1.2
Subtrahiere von .
Schritt 2.2.3.1.3
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2.2.3.1.4
Potenziere mit .
Schritt 2.2.3.1.5
Kombiniere und .
Schritt 2.2.3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.3.3
Kombiniere und .
Schritt 2.2.3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.3.5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.5.1
Mutltipliziere mit .
Schritt 2.2.3.5.2
Subtrahiere von .
Schritt 2.2.3.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.3
Schnittpunkt(e) mit der y-Achse in Punkt-Form.
Schnittpunkt(e) mit der y-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 3
Führe die Schnittpunkte auf.
Schnittpunkt(e) mit der x-Achse:
Schnittpunkt(e) mit der y-Achse:
Schritt 4